摘要:
The present invention is related to glucose sensors that are capable of detecting the concentration or level of glucose in a solution or fluid having either low or high ionic strength. The glucose sensors of the present invention comprise a polymerized crystalline colloidal array (PCCA) and a molecular recognition component capable of responding to glucose. The molecular recognition component may be a boronic acid, such as a phenylboronic acid, glucose oxidase, a combination of phenylboronic acid and poly(ethylene)glycol or crown ether, or another component capable of detecting glucose in various fluids and solutions. The glucose sensors of the present invention may be useful in the development of noninvasive or minimally invasive in vivo glucose sensors for patients having diabetes mellitus.
摘要:
A method of separating compounds, includes: a. tagging at least a first organic compound with a first tagging moiety to result in a first tagged compound; b. tagging at least a second organic compound with a second tagging moiety different from the first tagging moiety to result in a second tagged compound, the first tagging moiety and the second tagging moiety including at least one of a common repeat unit, but having a different number of the repeat units therein, the greater the number of repeat units, the greater the polarity of the tagging moiety; and c. separating the first tagged compound from a mixture including at least the second tagged compound using a chromatographic separation technique based upon differences in the number of repeat units between the first tagging moiety and the second tagging moiety. A method of separating compounds includes: a. tagging at least a first organic compound with a first nonfluorous tagging moiety to result in a first tagged compound; b. tagging at least a second organic compound with a second nonfluorous tagging moiety different from the first tagging moiety to result in a second tagged compound, the first nonfluorous tagging moiety and the second nonfluorous tagging moiety including at least one of a common repeat unit, but having a different number of the repeat units therein, the greater the number of repeat units, the greater the affinity of the nonfluorous tagging moiety for a stationary phase of a chromatographic separation technique; and c. separating the first tagged compound from a mixture including at least the second tagged compound using a chromatographic separation technique based upon differences in the number of repeat units between the first nonfluorous tagging moiety and the second nonfluorous tagging moiety.