摘要:
During an initial sending and receiving of QoS parameters between a QoS-based application and a data stack controller of a mobile terminal, the parameters are stored to a data stack of the mobile terminal. The parameters are used in an initial negotiation between the data stack controller and a base station. Subsequent re-negotiations of parameters between the data stack controller and other base stations does not require any subsequent re-sending and re-receiving of QoS parameters between the application and the data stack controller as any subsequent re-negotiations are implemented by retrieving the parameters from the data stack. As such, the application is “kept blind” of later re-negotiations between the data stack controller and base stations and continues its operation without disruption even during re-negotiations at handoffs between QoS and non-QoS aware base stations as the application receives QoS support during operation or operates under “best effort” conditions.
摘要:
This disclosure is directed to packet scheduling techniques for prioritizing packets in the first generation (1X) evolution data optimized (EV-DO) network or similar networks that do not provide quality of service (QoS) support at the media access control (MAC) level. The techniques make use of a plurality of prioritized queues that are organized into packet flows. The different packet flows associate packets having similar or identical radio link protocols (RLPs) in order to achieve the necessary error detection for such related packets. The different queues define packet priorities base on packet type, in order to give transmission priority to certain types of packets over other types of packets. By separating the packets into different prioritized queues and associating several queues into common packet flows, prioritization can be achieved along with an efficient implementation of different error detection schemes.
摘要:
A broadband service is provided by allocating air interface resources in a wireless network that conforms to the 1xEV-DO standard. The air interface resources are characterized by various quality of service (QoS) parameters, such as bandwidth, packet priority and error rate. Packetized information is transmitted in data flows between a base station and cell phones. A particular QoS level is reserved for each of the data flows that support the broadband service. An operating system on a cell phone monitors one data flow as well as another data flow in the opposite direction. When the base station runs out of an air interface resource, the base station suspends the QoS reservation of a data flow. The operating system determines that the QoS reservation in one direction has been suspended and sends an unsolicited message to the base station releasing the QoS reservation in the opposite direction, thereby conserving network resources.
摘要:
More seamless handoff between access networks is achieved by saving session information for each access network upon being handed off from the access network and invoking the saved session information upon being handed back to the access network. An access terminal establishes a first session with a first access network, which may entail performing QoS negotiation with the first access network and setting up packet filters at a packet data gateway. The access terminal exchanges data with the first access network in accordance with the configuration of the first session. The access terminal saves the first session configuration after being handed off to a second access network, establishes a second session with the second access network, and exchanges data with the second access network in accordance with the configuration of the second session. The access terminal uses the saved first session configuration upon being handed back to the first access network.
摘要:
This disclosure is directed to packet scheduling techniques for prioritizing packets in the first generation (1X) evolution data optimized (EV-DO) network or similar networks that do not provide quality of service (QoS) support at the media access control (MAC) level. The techniques make use of a plurality of prioritized queues that are organized into packet flows. The different packet flows associate packets having similar or identical radio link protocols (RLPs) in order to achieve the necessary error detection for such related packets. The different queues define packet priorities base on packet type, in order to give transmission priority to certain types of packets over other types of packets. By separating the packets into different prioritized queues and associating several queues into common packet flows, prioritization can be achieved along with an efficient implementation of different error detection schemes.