摘要:
Both a cascade and a multichannel joint Bayesian estimator are provided for suppressing acoustic echo. An expansion basis (Power/Fourier series) is selected to convert a sample-based input signal xt into a DFT-domain multichannel signal [Xτ,1, . . . Xτ,p]. The posterior of unknown states (e.g., mean Ŵτ and covariance Pτ of the echo path Wτ and the mean âτ and covariance Qτ of the nonlinear coefficients aτ; or channel-wise mean Ŵτ,i and multichannel covariance Pτ of a compound quantity formed by merging together the echo path Wτ and the ith nonlinear coefficient aτ,i) and model parameters θτ are estimated; and Kalman gain factor(s) Kτ are computed for optimal adaptation of the posterior of unknown states. An echo signal Ŷτ is estimated using the multichannel input signal [Xτ,1, . . . Xτ,p] and the adapted posterior; and an error signal Eτ is generated. Residual echo is suppressed by post-filtering the error signal Eτ with a weighting function ψτ which depends on the adapted posterior, and the filtered error signal ŝ′t is then transmitted to a far-end.
摘要:
Both a cascade and a multichannel joint Bayesian estimator are provided for suppressing acoustic echo. An expansion basis (Power/Fourier series) is selected to convert a sample-based input signal xt into a DFT-domain multichannel signal [Xτ,1, . . . Xτ,p]. The posterior of unknown states (e.g., mean Ŵτ and covariance Pτ of the echo path Wτ and the mean âτ and covariance Qτ of the nonlinear coefficients aτ; or channel-wise mean Ŵτ,i and multichannel covariance Pτ of a compound quantity formed by merging together the echo path Wτ and the ith nonlinear coefficient aτ,i) and model parameters θτ are estimated; and Kalman gain factor(s) Kτ are computed for optimal adaptation of the posterior of unknown states. An echo signal Ŷτ is estimated using the multichannel input signal [Xτ,1, . . . Xτ,p] and the adapted posterior; and an error signal Eτ is generated. Residual echo is suppressed by post-filtering the error signal Eτ with a weighting function ψτ which depends on the adapted posterior, and the filtered error signal ŝ′t is then transmitted to a far-end.
摘要:
This invention discloses an improvement to a digital Acoustic Echo Control (AEC) in hands-free telephones. It describes an additional adaptive filter referred to as a residual echo filter, which is placed after the usual echo canceller and it is used to efficiently and accurately estimate a residual echo signal b(i) and a system coupling factor β(i), which can be utilized to establish an efficient control for the AEC system and construct the appropriate filters. The invention also describes a control block means performing a joint operation control of the echo canceller, residual echo suppressor and residual echo filter for achieving more consistent echo cancellation results and enhancing output signal quality.
摘要:
This invention discloses an improvement to a digital Acoustic Echo Control (AEC) in hands-free telephones. It describes an additional adaptive filter referred to as a residual echo filter, which is placed after the usual echo canceller and it is used to efficiently and accurately estimate a residual echo signal b(i) and a system coupling factor β(i), which can be utilized to establish an efficient control for the AEC system and construct the appropriate filters. The invention also describes a control block means performing a joint operation control of the echo canceller, residual echo suppressor and residual echo filter for achieving more consistent echo cancellation results and enhancing output signal quality.
摘要:
This invention describes a statistical adaptive-filter controller for digital acoustic echo control in hands-free telephones for achieving more consistent echo cancellation results (i.e. higher output signal quality) and simpler realizations of AEC units. The improvement using the simple statistical adaptive-filter controller is accomplished by optimizing a joint control of an echo canceller and a postfilter.