Abstract:
In a cooperative spectrum sensing method and system for locationing primary transmitters, each of secondary users transmits to a corresponding one of cognitive radio (CR) base station location information thereof and a received signal strength indicator (RSSI) value generated thereby in response to sensing power signals from the primary transmitters. The CR base stations transmit the location information and the RDDI values of the secondary users to a data fusion center such that the data fusion center obtains the number and locations of the primary transmitters based on the location information and the RSSI values received thereby using a learning algorithm to thereby reconstruct a power propagation map of the primary transmitters.
Abstract:
The present invention propose a driving apparatus for an image processing system. A DC motor with a feedback controlling system is utilized as the driving apparatus. With the design of the present invention, the accuracy of the position control can be increased and the prior art problem of missing steps and unequalled steps can be eliminated. The driving apparatus of the present invention includes a DC motor, a position detecting device, an error counter, a controlling circuit, and a driving circuit. The position detecting device is employed for detecting positions of the DC motor in order to generate feedback signals. The error counter is responsive to input signals and the feedback signals for generating error signals. The controlling circuit is responsive to the error signals for controlling the DC motor. The driving circuit is responsive to the controlling circuit for driving the DC motor.
Abstract:
A radio system is provided. The radio system comprises primary devices, secondary devices, cognitive radio base stations and a data fusion center. The primary devices are licensed to use communication channels. The secondary devices acquire sensing reports of received signal strength, location and channel information of the primary devices. The cognitive radio base stations receive the sensing reports generated by the secondary devices through a control channel. The data fusion center receives the sensing reports from the cognitive radio base stations through a backbone network and performs a cooperative spectrum sensing process on the sensing reports to obtain primary device information with respect to the number, spectrum distribution and coverage area of the primary devices, wherein the primary device information is accessible by the secondary devices such that the secondary devices select one of the communication channels according to the primary device information to perform communications.
Abstract:
In a cooperative spectrum sensing method and system for locationing primary transmitters, each of secondary users transmits to a corresponding one of cognitive radio (CR) base station location information thereof and a received signal strength indicator (RSSI) value generated thereby in response to sensing power signals from the primary transmitters. The CR base stations transmit the location information and the RDDI values of the secondary users to a data fusion center such that the data fusion center obtains the number and locations of the primary transmitters based on the location information and the RSSI values received thereby using a learning algorithm to thereby reconstruct a power propagation map of the primary transmitters.