Abstract:
A methodology for IPTT (interval pressure transient testing) design which allows estimation of the reliability of the transient tests. A normally distributed random noise is superimposed on analytical pressure profile computed for a given formation, PVT, and gauge metrology. The IPTT success in a particular environment is estimated based on the theoretical pressure derivative and noise superimposed pressure derivative. This approach is repeated for a range of rock, fluid properties, and practical limits, for a successful IPTT.
Abstract:
A methodology for IPTT (interval pressure transient testing) design which allows estimation of the reliability of the transient tests. A normally distributed random noise is superimposed on analytical pressure profile computed for a given formation, PVT, and gauge metrology. The IPTT success in a particular environment is estimated based on the theoretical pressure derivative and noise superimposed pressure derivative. This approach is repeated for a range of rock, fluid properties, and practical limits, for a successful IPTT.