摘要:
An implanted microphone is provided that has reduced sensitivity to vibration and attendant acceleration forces. In this regard, the microphone differentiates between the desirable and undesirable components of a transcutaneously received signal. More specifically, the present invention utilizes an output that is indicative of acceleration forces acting on the implanted microphone (e.g., an acceleration signal) to counteract and/or cancel the effects of acceleration induced pressures in an output signal of a microphone diaphragm. This may be done in a variety of ways, including but not limited to, pneumatically, mechanically, electrical analog, or digitally, or combinations thereof. In one arrangement, the generated output may be filtered to match the an acceleration response of the output signal of the microphone diaphragm such that upon removal of the motion signal from the microphone output, the remaining signal is an acoustic signal.
摘要:
A system for reducing the vibration sensitivity of an implantable microphone without an equal or greater reduction in sound sensitivity. The system reduces non-ambient vibrations by placing at least one compliant member into the path of transmission for tissue-borne vibration, but not into the path for ambient sound-induced vibration. More particularly, a compliant member is interposed along the path between a source of non-ambient vibration and an implanted microphone. In one aspect, a compliant base member is disposed between an implanted microphone and an implant wearer's skull. In another aspect, a microphone is compliantly suspended relative to an implant housing using a support membrane. In either aspect, the compliant member (i.e., base member and/or membrane) and the supported member (i.e., housing and/or microphone) define a supported system having a natural or resonant frequency. This natural frequency may be set to a value to advantageously isolate the microphone against transmitted vibration.
摘要:
An implantable microphone comprises a hermetically-sealed, enclosed volume and an electret member and back plate disposed with a space therebetween and capacitively coupleable to provide an output signal indicative of acoustic signals incident upon at least one of the electret member and back plate. The back plate may be disposed to define a peripheral portion of the enclosed volume, e.g., the back plate may be defined as part of a flexible diaphragm that receives external acoustic signals. Vents may be provided to fluidly interconnect first and second portions of the enclosed volume that are located on first and second sides of the electret member. In another embodiment, the electret member may be flexible and spaced relative to a flexible outer diaphragm.
摘要:
An implanted microphone is provided that has reduced sensitivity to vibration and attendant acceleration forces to differentiate between desirable and undesirable components of a transcutaneously received signal. More specifically, the microphone utilizes an output that is indicative of acceleration forces acting on the implanted microphone to counteract and/or cancel the effects of acceleration-induced pressures in an output signal of a microphone diaphragm. In one arrangement, a microphone having two diaphragms pneumatically cancels acceleration pressures. In this arrangement, a first diaphragm receives and generates a response to commingled acoustic and acceleration forces and a second diaphragm is substantially isolated from the acoustic forces. That is, the second diaphragm generates a response to acceleration forces. The displacements of the first and second diaphragms are pneumatically combined. The result of such pneumatic combination is that the acoustic component of the first diaphragm is enhanced in a resulting output signal.
摘要:
An implantable microphone comprises a hermetically-sealed, enclosed volume and an electret member and back plate disposed with a space therebetween and capacitively coupleable to provide an output signal indicative of acoustic signals incident upon at least one of the electret member and back plate. The back plate may be disposed to define a peripheral portion of the enclosed volume, e.g., the back plate may be defined as part of a flexible diaphragm that receives external acoustic signals. Vents may be provided to fluidly interconnect first and second portions of the enclosed volume that are located on first and second sides of the electret member. In another embodiment, the electret member may be flexible and spaced relative to a flexible outer diaphragm.
摘要:
An implantable hearing aid transducer apparatus provides a simplified approach for interface with a middle ear component. The transducer includes a transducer housing, an actuator for middle ear coupling, and a driver having a magnet or coil interconnected to the actuator to induce movement in response to driver signals. In one feature, the actuator may be advanceable through an aperture of the housing independent from operation of the driver. In another feature, a portion of the transducer may be rotatable. In another feature, a retention apparatus may function to selectively secure a rotatable portion of the housing in a selected position. In an additional feature, a seal may be disposed around a driver component and connected to the actuator.
摘要:
The invention is directed to an implanted microphone having reduced sensitivity to vibration. In this regard, the microphone differentiates between the desirable and undesirable vibration by utilizing at least one motion sensor to produce a motion signal when an implanted microphone is in motion. This motion signal is used to yield a microphone output signal that is less vibration sensitive. In a first arrangement, the motion signal may be processed with an output of the implantable microphone transducer to provide an audio signal that is less vibration-sensitive than the microphone output alone. In another arrangement, the motion signal may be utilized to actuate at least one actuator. Such an actuator may be capable of applying a force to move the implantable microphone or an implant capsule so as to reduce movement of a microphone diaphragm relative to the skin of a patient which covers the microphone diaphragm.
摘要:
Method for obtaining diagnostic information utilizing an electrical signal output from an implantable transducer. According to one aspect of the invention, a method includes the steps of vibrating an ossicular bone of a patient having an implanted transducer using an input provided over a biological conduction path. The method further includes sensing in the implanted transducer an initial movement of the ossicular bone caused by the input and obtaining an electrical signal output from the implanted transducer generated in response to sensing the initial movement. The electrical signal output is then utilized to determine the diagnostic information.
摘要:
An implantable microphone is disclosed having an external diaphragm and housing that forming chamber capable of being pressurized by deformational movement of the diaphragm induced by pressure waves (e.g., acoustic signals) propagating through overlying tissue. The chamber is shaped such that the volume of the chamber upon deflection of the diaphragm is reduced compared to a static volume of the chamber (i.e., volume of the chamber with no diaphragm deflection). As a result, the change in pressure within the chamber for a given diaphragm displacement is greater than it would be within a chamber having a cylindrical volume, leading to greater microphone sensitivity. In one arrangement, the chamber is shaped such that it is deeper at its center than at its edges, for example, to form a conical or paraboloidal volume.
摘要:
A hearing aid transducer that includes an actuator advanceable relative to the transducer to couple with a middle ear component. In one aspect of the invention, the actuator is a separate structure from the transducer that is insertable into an aperture defined between a first and second end of the transducer. This permits separate connection of the actuator to the middle ear component and the transducer to improve coupling of the transducer to the middle ear component, e.g., minimizing loads on the middle ear component.