Abstract:
A method for phased garbage collection is provided. In this method, a write command is received to write data. The write command is allocated a timeout period to complete an execution of the write command. Thereafter, a busy signal is asserted and a portion of a garbage collection operation is performed for a garbage collection time period. The data are written to a block and the busy signal is released before the timeout period.
Abstract:
A method for operating a non-volatile memory storage system is provided. In this method, a write command is received to write data. The write command is allocated a timeout period to complete an execution of the write command. Within the timeout period, a portion of a garbage collection operation is performed. The data associated with the write command are written to a buffer associated with the non-volatile memory storage system.
Abstract:
A non-volatile memory storage system is provided. The non-volatile memory storage system includes a memory configured to store a storage system firmware and a non-volatile memory cell array configured to maintain a buffer. A processor in communication with the memory and the non-volatile memory cell array also is included in the non-volatile memory storage system. Here, the processor is configured to execute the storage system firmware stored in the memory. The storage system firmware comprises program instructions for receiving a write command to write data to the non-volatile memory cell array. The write command is allocated a timeout period to complete an execution of the write command. The storage system firmware also comprises program instructions for performing a portion of a garbage collection operation within the timeout period and for storing the data in the buffer.
Abstract:
A non-volatile memory storage system is provided. The non-volatile memory storage system comprises a memory configured to store a storage system firmware and a non-volatile memory cell array. Additionally included is a processor in communication with the memory and the non-volatile memory cell array. The processor is configured to execute the storage system firmware stored in the memory. The storage system firmware includes program instructions for receiving a write command to write a plurality of data to the non-volatile memory cell array. The write command is allocated a timeout period to complete an execution of the write command. Additionally included are program instructions for asserting a busy signal, performing a portion of a garbage collection operation for a garbage collection time period, writing the data to a block, and releasing the busy signal before the timeout period.
Abstract:
A method for operating a non-volatile memory storage system is provided. In this method, a write command is received to write data. The write command is allocated a timeout period to complete an execution of the write command. Within the timeout period, a portion of a garbage collection operation is performed. The data associated with the write command are written to a buffer associated with the non-volatile memory storage system.
Abstract:
A method for phased garbage collection is provided. In this method, a write command is received to write data. The write command is allocated a timeout period to complete an execution of the write command. Thereafter, a busy signal is asserted and a portion of a garbage collection operation is performed for a garbage collection time period. The data are written to a block and the busy signal is released before the timeout period.
Abstract:
A non-volatile memory storage system is provided. The non-volatile memory storage system includes a memory configured to store a storage system firmware and a non-volatile memory cell array configured to maintain a buffer. A processor in communication with the memory and the non-volatile memory cell array also is included in the non-volatile memory storage system. Here, the processor is configured to execute the storage system firmware stored in the memory. The storage system firmware comprises program instructions for receiving a write command to write data to the non-volatile memory cell array. The write command is allocated a timeout period to complete an execution of the write command. The storage system firmware also comprises program instructions for performing a portion of a garbage collection operation within the timeout period and for storing the data in the buffer.
Abstract:
A non-volatile memory storage system is provided. The non-volatile memory storage system comprises a memory configured to store a storage system firmware and a non-volatile memory cell array. Additionally included is a processor in communication with the memory and the non-volatile memory cell array. The processor is configured to execute the storage system firmware stored in the memory. The storage system firmware includes program instructions for receiving a write command to write a plurality of data to the non-volatile memory cell array. The write command is allocated a timeout period to complete an execution of the write command. Additionally included are program instructions for asserting a busy signal, performing a portion of a garbage collection operation for a garbage collection time period, writing the data to a block, and releasing the busy signal before the timeout period.
Abstract:
This application discloses a wind pressure-driven air intake device for natural ventilation of zero power consumption. Such a device comprises multiple tunnels being arranged around a common central chamber, each having an inflow valve at its inner end connecting the central chamber and an outer end open to ambient airflow. The inflow valve allows only inward flow from a corresponding tunnel into the central chamber. The central chamber has an opening allowing airflow exit to a space to be ventilated. The device is capable of capturing ambient wind flow and wind pressure to be fed to the vented space regardless of wind flow direction towards the device, with no need for a powered air driver.
Abstract:
A natural ventilator is herein disclosed that is free of moving parts, wind-activated, rain-proof, and free of dust or smog infiltration. It is not only suitable to be a standalone natural ventilator, but is also advantageous to be used as an enhanced exhaust exit in a forced-air ventilation system, for such enclosed spaces or objects as buildings and vehicles needing air relief. The ventilator assembly has rainwater-proof shapes or fixtures that serve to defend the vent system, and the interior space being vented, against rainwater invasion, even if raindrop trajectory becomes highly oblique from vertical as driven by strong winds. It also includes shapes or fixtures to prevent fume condensation from drifting outward and staining the exterior of a building or vehicle, or the like, that is being vented.