Systems and methods for machine learning based automatic bullseye plot generation

    公开(公告)号:US11308610B2

    公开(公告)日:2022-04-19

    申请号:US16709982

    申请日:2019-12-11

    Abstract: A system for generating a bullseye plot of a heart of a subject is provided. The system may obtain multiple slice images in a plurality of groups, wherein each group corresponds to one of a plurality of sections of the heart and includes at least one slice image of the corresponding section, and each slice image includes part of the right ventricle, part of the left ventricle, and part of the myocardium. The system may also identify at least one landmark associated with the left ventricle by applying a landmark detection network in each of the slice images. The system may further generate the bullseye plot of the heart based on the at least one landmark identified in each of the multiple slice images, wherein the bullseye plot includes a plurality of sectors, each of which represents an anatomical region of the myocardium in one of the plurality of sections.

    SYSTEMS AND METHODS FOR GENERATING BULLSEYE PLOTS

    公开(公告)号:US20220122259A1

    公开(公告)日:2022-04-21

    申请号:US17076641

    申请日:2020-10-21

    Abstract: A bullseyes plot may be generated based on cardiac magnetic resonance imaging (CMRI) to facilitate the diagnosis and treatment of heart diseases. Described herein are systems, methods, and instrumentalities associated with bullseyes plot generation. A plurality of myocardial segments may be obtained for constructing the bullseye plot based on landmark points detected in short-axis and long-axis magnetic resonance (MR) slices of the heart and by arranging the short-axis MR slices sequentially in accordance with the order in which the slices are generated during the CMRI. The sequential order of the short-axis MR slices may be determined utilizing projected locations of the short-axis MR slices on a long-axis MR slice and respective distances of the projected locations to a landmark point of the long-axis MR slice. The myocardium and/or landmark points may be identified in the short-axis and/or long-axis MR slices using artificial neural networks.

    SENSING DEVICE FOR MEDICAL FACILITIES

    公开(公告)号:US20210158937A1

    公开(公告)日:2021-05-27

    申请号:US16860901

    申请日:2020-04-28

    Abstract: A medical system may utilize a modular and extensible sensing device to derive a two-dimensional (2D) or three-dimensional (3D) human model for a patient in real-time based on images of the patient captured by a sensor such as a digital camera. The 2D or 3D human model may be visually presented on one or more devices of the medical system and used to facilitate a healthcare service provided to the patient. In examples, the 2D or 3D human model may be used to improve the speed, accuracy and consistency of patient positioning for a medical procedure. In examples, the 2D or 3D human model may be used to enable unified analysis of the patient's medical conditions by linking different scan images of the patient through the 2D or 3D human model. In examples, the 2D or 3D human model may be used to facilitate surgical navigation, patient monitoring, process automation, and/or the like.

    Systems and methods for generating bullseye plots

    公开(公告)号:US11521323B2

    公开(公告)日:2022-12-06

    申请号:US17076641

    申请日:2020-10-21

    Abstract: A bullseyes plot may be generated based on cardiac magnetic resonance imaging (CMRI) to facilitate the diagnosis and treatment of heart diseases. Described herein are systems, methods, and instrumentalities associated with bullseyes plot generation. A plurality of myocardial segments may be obtained for constructing the bullseye plot based on landmark points detected in short-axis and long-axis magnetic resonance (MR) slices of the heart and by arranging the short-axis MR slices sequentially in accordance with the order in which the slices are generated during the CMRI. The sequential order of the short-axis MR slices may be determined utilizing projected locations of the short-axis MR slices on a long-axis MR slice and respective distances of the projected locations to a landmark point of the long-axis MR slice. The myocardium and/or landmark points may be identified in the short-axis and/or long-axis MR slices using artificial neural networks.

    HIERARCHICAL SYSTEMS AND METHODS FOR IMAGE SEGMENTATION

    公开(公告)号:US20210158511A1

    公开(公告)日:2021-05-27

    申请号:US17014594

    申请日:2020-09-08

    Abstract: Described herein are systems, methods and instrumentalities associated with image segmentation. The systems, methods and instrumentalities have a hierarchical structure for producing a coarse segmentation of an anatomical structure and then refining the coarse segmentation based on a shape prior of the anatomical structure. The coarse segmentation may be generated using a multi-task neural network and based on both a segmentation loss and a regression loss. The refined segmentation may be obtained by deforming the shape prior using one or more of a shape-based model or a learning-based model.

    SYSTEMS AND METHODS FOR AUTOMATED HEALTHCARE SERVICES

    公开(公告)号:US20230032103A1

    公开(公告)日:2023-02-02

    申请号:US17966000

    申请日:2022-10-14

    Abstract: Healthcare services can be automated utilizing a system that recognizes at least one characteristic of a patient based on images of the patient acquired by an image capturing device. Relying on information extracted from these images, the system may automate multiple aspects of a medical procedure such as patient identification and verification, positioning, diagnosis and/or treatment planning using artificial intelligence or machine learning techniques. By automating these operations, healthcare services can be provided remotely and/or with minimum physical contact between the patient and a medical professional.

    Systems and methods for automated healthcare services

    公开(公告)号:US11475997B2

    公开(公告)日:2022-10-18

    申请号:US16798100

    申请日:2020-02-21

    Abstract: Healthcare services can be automated utilizing a system that recognizes at least one characteristic of a patient based on images of the patient acquired by an image capturing device. Relying on information extracted from these images, the system may automate multiple aspects of a medical procedure such as patient identification and verification, positioning, diagnosis and/or treatment planning using artificial intelligence or machine learning techniques. By automating these operations, healthcare services can be provided remotely and/or with minimum physical contact between the patient and a medical professional.

Patent Agency Ranking