摘要:
A wireless communication system base station uses a dual-polarized antenna array to receive two signal groups having orthogonal polarizations. In a preferred embodiment, a first signal group is received using a first sub-array of odd-numbered antenna elements, while a second signal group is received using a second sub-array of even-numbered antenna elements. Dipoles within the odd-numbered elements are selected so that they have a common polarization orthogonal to the dipoles selected in the even-numbered elements. The two signal groups thus have orthogonal polarizations. Base station signal processing hardware performs separate spatial channel estimation for these two groups, and uses the polarization diversity to improve performance in both the uplink and downlink. The use of polarization diversity allows the physical dimensions of the antenna array to be kept to a minimum.
摘要:
Traffic channel signals and pilot channel signals are transmitted from a base station to a mobile station using different beams. The beam carrying the pilot channel signal is a sector-wide beam, while the beam carrying the traffic channel signal has been minimized based on the number of frame errors associated with the traffic channel signal. The pilot and traffic channel signals are also phase matched. All traffic channel antenna beams in the same direction are maintained at approximately the same effective radiated power.
摘要:
Systems and methods providing analysis of channel characteristics for determining a optimum beam configuration for use therein are shown. Preferably, the direction and angle spread for subscriber units are determined in order to provide a beam for use therewith. According to a preferred embodiment, forward link characteristics are emulated in the reverse link in order to identify an optimum beam configuration. This optimum beam configuration is then preferably adapted for use in the forward link. Preferably, the present invention operates to recognize subscriber units which are spatially separated such that the optimized beams may be utilized in providing simultaneous communications therewith.
摘要:
A wireless communication system base station uses a dual-polarized antenna array to receive two signal groups having orthogonal polarizations. In a preferred embodiment a first signal group is received using a first sub-array of odd-numbered antenna elements, while a second signal group is received using a second sub-array of even-numbered antenna elements. Dipoles within the odd-numbered elements are selected so that they have a common polarization orthogonal to the dipoles selected in the even-numbered elements. The two signal groups thus have orthogonal polarizations. Base station signal processing hardware performs separate spatial channel estimation for these two groups, and uses the polarization diversity to improve performance in both the uplink and downlink. The use of polarization diversity allows the physical dimensions of the antenna array to be kept to a minimum.
摘要:
Disclosed are systems and methods which proactively determine particular access terminals which are compatible for simultaneous communication at a high data rate and preferred embodiments provide scheduling of simultaneous communications such that data communication is optimized. Preferred embodiments of the present invention utilize a multiple element antenna array, and associated array response vectors associated with narrow antenna beam forming techniques, (adaptive array antennas) to identify compatible access terminals, such as by calculating a correlation between particular access terminals and, preferably utilizing a predetermined correlation threshold, identifying suitably uncorrelated access terminals. Using such information embodiments of the present invention may determine which particular access terminals may be controlled to transmit at a high data rate at a same time. Embodiments of the present invention are operable with respect to the forward and/or reverse links.
摘要:
A diversity reception handset includes a receiver for receiving pilot and plural increments of traffic sent from a base station within a service area of a wireless communications network. The handset includes at least two antennas, a switch for switching a receiver between the two antennas, a time-of-arrival searcher circuit connected to the receiver and responsive to the pilot for determining time of arrival of the received signals and expected time of arrival of each increment, and a controller for controlling the switch based upon determined expected time of arrival of each increment.
摘要:
A system and method is provided for adaptive downlink beamforming in a wireless communication system. The technique involves using an antenna array to transmit downlink control signals from the base station to the subscribers in the cell. Rather than transmitting the control signals in a given direction continuously, the control signals in the present system are transmitted for only a short time interval using one of a sequence of specified directional beams. After a predetermined sweep cycle period, the control signal beam is then retransmitted again in the same direction. Typically, during this cycle period control signal beams are also transmitted in other specified directions. In one embodiment, for example, the control signal beams sweep around the base station once during each cycle. A subscriber located in the cell will receive a repeating pattern of signal pulses corresponding to the periodic beams directed toward the subscriber. Because the sweeping beam pattern is known a priori, after a small number of sweeping cycle periods, the subscriber can easily estimate from the pattern of received signal pulses the optimal downlink beam or combination of beams. Techniques are provided that allow the optimal downlink beam to be estimated with angular resolution higher than the resolution of the sweeping beams. This optimal downlink beam information is then transmitted back to the base station, which uses it to transmit information to the subscriber using the optimal downlink beam, or combination of beams. Meanwhile, the subscriber continues to monitor the pattern of control beam pulses, and notifies the base station if the optimal downlink beam or beams changes.
摘要:
The present invention utilizes adaptive antenna arrays at a base station to increase the forward link capacity of mobile data systems. One or more simultaneous forward link beams are formed and are switched (or hopped) in a time division manner among subscribers. The beam hopping sequence is randomized by varying the time slot and/or carrier frequency of each subscriber. In space-time hopping, the position within a frame of the time slot for each subscriber is varied in a pseudo random sequence. In space-frequency hopping, the carrier frequency for each frame is varied in a pseudo random sequence. The pseudo random beam hopping sequence provides a gain due to interference diversity in addition to the antenna array gain. Forward link beam forming algorithms use space-time or space-frequency hopping to increase the capacity of mobile data systems.
摘要:
The invention provides systems and methods for providing improved wireless data communication. Preferred embodiments of the present invention utilize multiple antenna beams in the forward link to provide increased forward link capacity and/or improved forward link signal quality. Multiple orthogonal sub-pilots are transmitted from a plurality of antenna elements for use in determining forward link channel characteristics according to a preferred embodiment. Forward link channel estimates may then be made by the preferred embodiment subscriber units and provided in a reverse link control channel to the corresponding base station. Multiple beams may also be utilized in the reverse link to provide increased reverse link capacity, such as for use in providing feedback of forward link channel estimates.
摘要:
The invention provides optimization of communication links by using a control loop with a relatively long time constant and adjusting particular communication links based upon feedback from a virtual communication unit associated with a communication link. A preferred embodiment of the invention optimizes wireless links in a point to multipoint system, such as a cellular communication system, by dividing a service area into segments and adjusting an antenna beam associated with a segment when a mobile unit is operable therein. This preferred embodiment results in convergence upon an optimized communication link over time and is suitable for use even with highly mobile systems. Preferred embodiments of the invention provide control loops for location or segment optimization as well as for individual optimization.