Abstract:
An adaptor for a connector to be interposed between a first terminal unit having many contact pieces and a second terminal unit having many contact pieces that are used for input/output of a video signal, an audio signal, and a signal associated therewith. A first connecting portion has many contact pieces corresponding to the many contact pieces of the first terminal unit, respectively, and is so shaped as to be connectable to the first terminal unit. A second connecting portion has many contact pieces that correspond to the many contact pieces of the second terminal unit, respectively, and are connected to the respective contact pieces of the first connecting portion. The second connecting portion is so shaped as to be connectable to the second terminal unit. Conductive contact pieces are connected to predetermined ones of the many contact pieces of the first and second connecting portions, and are to be connected to pin plugs or pin jacks. Necessary signals can be supplied to another apparatus via the pin plugs or pin jacks that are connected to the conductive contact pieces.
Abstract:
A synthesizer receiver for performing frequency conversion of a received signal using a signal formed in a PLL and altering a frequency division ratio of a variable frequency dividing circuit of said PLL, thereby to alter the frequency of said signal so as to change a receiving frequency, provided with: memories for storing data of the receiving frequency in each of a plurality of data areas; station selecting means having a plurality of station selector keys corresponding to the plurality of data areas of the memory, wherein, from a data area corresponding to the operated station selector key, the receiving data stored in this data area are read out so that the receiving frequency is selected; and data moving means having a buffer area for saving the data of the receiving frequency stored in the data area, wherein, when one data area among the plurality of data areas is selected and established, and thereafter, another data area among the plurality of data areas is selected and established, the data of the receiving frequency stored in that one data area are saved in the buffer area and a vacant area is formed in that another data area, and the receiving frequency data that have been saved in the buffer area are returned to that another data area.
Abstract:
A synthesizer type receiver where frequency conversion of a received signal is performed by the use of a signal formed in a PLL, and the signal frequency is changed by changing the frequency division ratio of a variable frequency divider in the PLL to thereby change the received frequency. The receiver comprises a detector for detecting reception of a broadcast wave signal; a memory where data areas correspond respectively to a plurality of station selector keys; and a control unit having a data table with a data section relative to frequencies of broadcasting stations receivable in divided areas of the whole area where the receiver is to be used. In a preset mode, the reception frequency band is scanned by changing the frequency of the signal through change of the frequency division ratio, and when the reception frequency at the time of detection of the broadcast wave signal by the detector during the scan is included in the frequency data stored in any preselected divided area, the data relative to the reception frequency is stored in the data area of the memory, and the broadcasting station being currently received is preset in the station selector key corresponding to the data stored area in accordance with the storage.
Abstract:
A signal reproduction apparatus such as an audio apparatus consists of a plurality of devices including a receiver. The receiver receives a broadcast wave signal (such as an FM signal) which includes a primary signal, along with data (such as RDS data) relating to a broadcasting station, a program, etc. transmitted together with the primary signal. The receiver includes a tuner circuit for receiving the broadcast wave signal, a decoder circuit and a signal generation device. The decoder circuit extracts the data (such as RDS data) relating to the broadcasting station and the program from the broadcast wave signal received by the tuner circuit. The signal generation device generates a remote control signal based on the data output from the decoder circuit, and outputs the generated remote control signal. The audio device includes a receiving section for receiving the remote control signal output from the signal generation device. The operation of the audio device is controlled based on the control signal output from the signal generation device of receiving section.
Abstract:
An RDS receiver capable of extracting an AF list from the RDS data and selecting a broadcasting station of any of the frequencies on the AF list. The receiver is equipped with functions of selecting, during reception of a desired broadcast of one frequency, a station of the other frequency on the AF list by manipulation of a predetermined key; checking the reception state of the RDS data from the selected broadcasting station; checking the PI code to detect if the result of the preceding check is satisfactory or not; and picking up the broadcast from the selected station upon coincidence of the checked PI code with the PI code of the aforesaid one frequency.
Abstract:
A receiver having a frequency synthesizer tuner permits channel selection by rotating a dial, and the output muting time during channel selection is varied in response to the rotational speed at which the dial is turned, so that a listener/operator can gain an improved feel during channel selection that is similar to that present when operating a variable-capacitor tuner.