Abstract:
A system for removing residual contaminants from an image conditioning apparatus that removes excess liquid from a developed image made up of toner particles immersed in a liquid carrier medium on an image bearing member. The system includes a vacuum blotting device that contacts the liquid developed image and absorbs a portion of the liquid carrier and residual contaminants remain thereon. A contact member adapted to be shifted from a non-operative position spaced from the vacuum blotting device, to an operative position in contact with the vacuum blotting device operates to transfer the contaminants therefrom. A scraper removes the transferred contaminants from the contact member. The contact member is pivotally mounted about the pivot point to effect shifting of the contact member between the non-operative and the operative position.
Abstract:
Apparatuses useful in printing and methods of fixing marking materials on media in apparatuses useful in printing are provided. An exemplary embodiment of the apparatuses useful in printing includes a first fixing device disposed along a first media path. The first fixing device includes a first fixing member including a first surface and a second fixing member including a second surface which forms a first nip with the first surface. The first fixing device does not include a thermal energy source that actively heats the first surface or the second surface and the first fixing device is adapted to apply pressure to a medium received at the first nip. A second fixing device is disposed along a second media path. The second fixing device includes at least one thermal energy source adapted to supply thermal energy to actively heat the medium at the second fixing device. A controller is configured to selectively route the medium to the first fixing device or to the second fixing device.
Abstract:
An image protecting conditioning roll for conditioning developed images in a liquid immersion development reproduction machine. The image protecting conditioning roll includes a rigid, conductive and porous core; an absorbent intermediate layer formed over the rigid core; and an inelastic image protecting top, outer layer formed over the absorbent intermediate layer, for contacting and protecting an image being conditioned, by preventing undesirable image offset and image smearing.
Abstract:
Multi-stage fixing systems for fixing toner to a substrate, printing apparatuses and methods of fixing marking material to a substrate are provided. An exemplary embodiment of the multi-stage fixing systems includes a softening device for softening toner applied to a substrate by a marking device; and a fixing device for fixing the softened toner to the substrate. The fixing device includes a first fixing member including a first surface; a first thermal energy source for actively heating the first surface; and a second fixing member including a second surface, the first surface and the second surface form a fixing nip at which the substrate with softened toner is received. The first fixing member and the second fixing member are operable to apply heat and pressure to the substrate and softened toner received at the fixing nip to fix the toner to the substrate.
Abstract:
A system for fixing an image on a piece of media is provided. The system has a first enclosure having an image forming section for forming the image on the piece of media and a pressure fixing section that does not include a thermal energy source for fixing the image to the piece of media. The pressure fixing section has a first rotating member, a second rotating member located proximate the first member such that a gap exists between the first member and the second member, the gap being for receiving the piece of media, and a force applying device that applies force to at least one of the first member and the second member to apply pressure to the piece of media such that the image is fixed to the piece of media by the pressure. The apparatus also has a second enclosure having a fixing section that includes a thermal energy source for further fixing the image to the piece of media after the image has been fixed to the media by the pressure fixing section.
Abstract:
Fixing systems, printing apparatuses and methods for fixing marking material to a substrate are provided. An exemplary embodiment of the fixing systems includes a pre-heating device for pre-heating a substrate and marking material disposed on a surface of the substrate; a fixing device disposed downstream from the pre-heating device, the fixing device including fixing members which oppose each other and form a fixing nip; and a first thermal energy source for heating at least one of the fixing members; wherein the fixing members apply pressure and thermal energy to the pre-heated substrate and marking material at the fixing nip to fix the toner to the substrate; and a conditioning device positioned (a) upstream from the pre-heating device, (b) between the pre-heating device and the fixing device, or (c) downstream from the fixing device. The conditioning device includes conditioning members which oppose each other and form a conditioning nip. The conditioning device does not include a thermal energy source that actively heats the conditioning members.
Abstract:
Multi-stage fixing systems for fixing toner to a substrate, printing apparatuses and methods of fixing marking material to a substrate are provided. An exemplary embodiment of the multi-stage fixing systems includes a softening device for softening toner applied to a substrate by a marking device; and a fixing device for fixing the softened toner to the substrate. The fixing device includes a first fixing member including a first surface; a first thermal energy source for actively heating the first surface; and a second fixing member including a second surface, the first surface and the second surface form a fixing nip at which the substrate with softened toner is received. The first fixing member and the second fixing member are operable to apply heat and pressure to the substrate and softened toner received at the fixing nip to fix the toner to the substrate.
Abstract:
A high differential air pressure assisted blotting device for conditioning, on an image bearing member, liquid developer images consisting of charged toner particles and carrier liquid. The high differential air pressure blotting device includes a movable porous blotter belt forming an endless loop and having an outer surface for contacting and blotting carrier liquid from an image being conditioned, and a backup roller positioned at a first location within the endless loop for contacting a first portion of the blotter belt to gently urge the blotter belt into blotting-contact with the image being conditioned. Importantly, the high differential air pressure blotting device includes a high differential air pressure assembly positioned at a second location spaced from the image being conditioned so as not to disturb the image, and from the first location for contacting a second portion of the blotter belt and applying a high differential air pressure to such second portion to force carrier liquid out of the blotter belt before such second portion recontacts an image being conditioned.
Abstract:
A roller for controlling the application of carrier liquid to an image bearing member in an electrostatographic reproduction apparatus having a rigid porous electroconductive supportive core, a conformable microporous covering provided around the core, and a pressure controller. The pressure controller is located to provide a positive or negative pressure within the porous core and across a cross section of the core and covering.
Abstract:
In some aspects of the present application, a method of forming one or more layers of at least a portion of a drug delivery device (DDD) is described. The method can include providing a substrate; providing one or more DDD components that are dissolved or dispersed in one or more pharmaceutically compatible phase change inks; ejecting, by one or more nozzles, a first portion of the one or more pharmaceutically compatible phase change inks to form a first layer on the substrate; and ejecting, by the one or more nozzles, a second portion of the pharmaceutically compatible phase change inks to form a second layer over the first layer.