摘要:
A method of generating power uses a nanoenergetic material. The nanoenergetic material comprising thermite is obtained and deposited on a substrate. An igniter is placed on the nanoenergetic material. When power is desired, the nanoenergetic material is ignited. A transducer receives thermal, sonic, magnetic, optic and/or mechanical energy from combustion of the nanoenergetic material and converts it into electrical energy. Preferably, the transducer is a thermoelectric, piezoelectric or magneto device. Preferably, multiple transducers are integrated in one power generators to maximize the power from nanoenergetic thermites.
摘要:
A method of generating power uses a nanoenergetic material. The nanoenergetic material comprising thermite is obtained and deposited on a substrate. An igniter is placed on the nanoenergetic material. When power is desired, the nanoenergetic material is ignited. A transducer receives thermal, sonic, magnetic, optic and/or mechanical energy from combustion of the nanoenergetic material and converts it into electrical energy. Preferably, the transducer is a thermoelectric, piezoelectric or magneto device. Preferably, multiple transducers are integrated in one power generators to maximize the power from nanoenergetic thermites.
摘要:
The invention provides methods for making homogeneous metal oxide nanoenergetic composites. A method of the invention forms a metal oxide nanostructure via a sol-gel process with surfactant templating. Metal nanoparticles are introduced into the metal oxide nanostructure via wet impregnation.
摘要:
The invention provides homogeneous mesoporous metal oxide nanoenergetic composites. A composite of the invention has a regular and uniform nanostructure of metal oxide, which is structured by a surfactant. Metal fuel nanoparticles are homogenously distributed through the regular and uniform nanostructure. The invention further provides methods for making homogeneous metal oxide nanoenergetic composites. A method of the invention forms a metal oxide nanostructure via a sol-gel process with surfactant templating. Metal nanoparticles into the metal oxide nanostructure via wet impregnation.
摘要:
The invention provides homogeneous mesoporous metal oxide nanoenergetic composites. A composite of the invention has a regular and uniform nanostructure of metal oxide, which is structured by a surfactant. Metal fuel nanoparticles are homogenously distributed through the regular and uniform nanostructure. The invention further provides methods for making homogeneous metal oxide nanoenergetic composites. A method of the invention forms a metal oxide nanostructure via a sol-gel process with surfactant templating. Metal nanoparticles into the metal oxide nanostructure via wet impregnation.
摘要:
In various embodiments, the present disclosure provides a thruster that utilizes a nanothermite material as a propellant. The thruster generally includes a body having at least one sidewall and a bottom wall that define a propellant chamber having a closed repulsion end and an opposing open exhaust end. The thruster additionally includes a nanothermite propellant configured within the propellant chamber to have a selected density that dictates a reaction propagation rate of the nanothermite propellant such that the reaction propagation rate will have a selected one of two distinctly different force-time profiles.
摘要:
The invention provides methods for making homogeneous metal oxide nanoenergetic composites. A method of the invention forms a metal oxide nanostructure via a sol-gel process with surfactant templating. Metal nanoparticles are introduced into the metal oxide nanostructure via wet impregnation.
摘要:
The invention provides metastable intermolecular composites that have good thermite properties while also being relatively insensitive to electrostatic discharge ignition. A preferred embodiment metastable intermolecular composite has a metal oxide nanostructure, which can be coated with an energetic polymer via a molecular linker or loaded with a gas generating polymer. Metal fuel nanoparticles coated with an energetic polymer via a molecular linker are closely associated with said metal oxide nanostructure. Methods of making metastable intermolecular composites are also provided by the invention.