Abstract:
In syllable or vowel or phone boundary detection during speech, an auditory spectrum may be determined for an input window of sound and one or more multi-scale features may be extracted from the auditory spectrum. Each multi-scale feature can be extracted using a separate two-dimensional spectro-temporal receptive filter. One or more feature maps corresponding to the one or more multi-scale features can be generated and an auditory gist vector can be extracted from each of the one or more feature maps. A cumulative gist vector may be obtained through augmentation of each auditory gist vector extracted from the one or more feature maps. One or more syllable or vowel or phone boundaries in the input window of sound can be detected by mapping the cumulative gist vector to one or more syllable or vowel or phone boundary characteristics using a machine learning algorithm.
Abstract:
In syllable or vowel or phone boundary detection during speech, an auditory spectrum may be determined for an input window of sound and one or more multi-scale features may be extracted from the auditory spectrum. Each multi-scale feature can be extracted using a separate two-dimensional spectro-temporal receptive filter. One or more feature maps corresponding to the one or more multi-scale features can be generated and an auditory gist vector can be extracted from each of the one or more feature maps. A cumulative gist vector may be obtained through augmentation of each auditory gist vector extracted from the one or more feature maps. One or more syllable or vowel or phone boundaries in the input window of sound can be detected by mapping the cumulative gist vector to one or more syllable or vowel or phone boundary characteristics using a machine learning algorithm.
Abstract:
Phoneme boundaries may be determined from a signal corresponding to recorded audio by extracting auditory attention features from the signal and extracting phoneme posteriors from the signal. The auditory attention features and phoneme posteriors may then be combined to detect boundaries in the signal.
Abstract:
Emotion recognition may be implemented on an input window of sound. One or more auditory attention features may be extracted from an auditory spectrum for the window using one or more two-dimensional spectro-temporal receptive filters. One or more feature maps corresponding to the one or more auditory attention features may be generated. Auditory gist features may be extracted from feature maps, and the auditory gist features may be analyzed to determine one or more emotion classes corresponding to the input window of sound. In addition, a bottom-up auditory attention model may be used to select emotionally salient parts of speech and execute emotion recognition only on the salient parts of speech while ignoring the rest of the speech signal.