摘要:
A method, computer program, and system for paging platform configuration registers in and out of a trusted platform module. In a trusted computing platform, an unlimited number of platform configuration registers can be obtained through paging. The trust platform module encrypts and decrypts platform configuration registers for storage outside the trusted platform module.
摘要:
A method for a plurality of key cache managers for a plurality of localities to share cryptographic key storage resources of a security chip, includes: loading an application key into the key storage; and saving a restoration data for the application key by a key cache manager, where the restoration data can be used by the key cache manager to re-load the application key into the key storage if the application key is evicted from the key storage by another key cache manager. The method allows each of a plurality of key cache managers to recognize that its key had been removed from the security chip and to restore its key. The method also allows each key cache manager to evict or destroy any key currently loaded on the security chip without affecting the functionality of other localities.
摘要:
A method is presented for implementing a trusted computing environment within a data processing system. A hypervisor is initialized within the data processing system, and the hypervisor supervises a plurality of logical, partitionable, runtime environments within the data processing system. The hypervisor reserves a logical partition for a hypervisor-based trusted platform module (TPM) and presents the hypervisor-based trusted platform module to other logical partitions as a virtual device via a device interface. Each time that the hypervisor creates a logical partition within the data processing system, the hypervisor also instantiates a logical TPM within the reserved partition such that the logical TPM is anchored to the hypervisor-based TPM. The hypervisor manages multiple logical TPM's within the reserved partition such that each logical TPM is uniquely associated with a logical partition.
摘要:
A method is presented for implementing a trusted computing environment within a data processing system. A hypervisor is initialized within the data processing system, and the hypervisor supervises a plurality of logical, partitionable, runtime environments within the data processing system. The hypervisor reserves a logical partition for a hypervisor-based trusted platform module (TPM) and presents the hypervisor-based trusted platform module to other logical partitions as a virtual device via a device interface. Each time that the hypervisor creates a logical partition within the data processing system, the hypervisor also instantiates a logical TPM within the reserved partition such that the logical TPM is anchored to the hypervisor-based TPM. The hypervisor manages multiple logical TPM's within the reserved partition such that each logical TPM is uniquely associated with a logical partition.
摘要:
An architecture for a distributed data processing system comprises a system-level service processor along with one or more node-level service processors; each are uniquely associated with a node, and each is extended to comprise any components that are necessary for operating the nodes as trusted platforms, such as a TPM and a CRTM in accordance with the security model of the Trusted Computing Group. These node-level service processors then inter-operate with the system-level service processor, which also contains any components that are necessary for operating the system as a whole as a trusted platform. A TPM within the system-level service processor aggregates integrity metrics that are gathered by the node-level service processors, thereafter reporting integrity metrics as requested, e.g., to a hypervisor, thereby allowing a large distributed data processing system to be validated as a trusted computing environment while allowing its highly parallelized initialization process to proceed.
摘要:
A method is presented for implementing a trusted computing environment within a data processing system. A hypervisor is initialized within the data processing system, and the hypervisor supervises a plurality of logical, partitionable, runtime environments within the data processing system. The hypervisor reserves a logical partition for a hypervisor-based trusted platform module (TPM) and presents the hypervisor-based trusted platform module to other logical partitions as a virtual device via a device interface. Each time that the hypervisor creates a logical partition within the data processing system, the hypervisor also instantiates a logical TPM within the reserved partition such that the logical TPM is anchored to the hypervisor-based TPM. The hypervisor manages multiple logical TPM's within the reserved partition such that each logical TPM is uniquely associated with a logical partition.
摘要:
An architecture for a distributed data processing system comprises a system-level service processor along with one or more node-level service processors; each are uniquely associated with a node, and each is extended to comprise any components that are necessary for operating the nodes as trusted platforms, such as a TPM and a CRTM in accordance with the security model of the Trusted Computing Group. These node-level service processors then inter-operate with the system-level service processor, which also contains any components that are necessary for operating the system as a whole as a trusted platform. A TPM within the system-level service processor aggregates integrity metrics that are gathered by the node-level service processors, thereafter reporting integrity metrics as requested, e.g., to a hypervisor, thereby allowing a large distributed data processing system to be validated as a trusted computing environment while allowing its highly parallelized initialization process to proceed.
摘要:
An architecture for a distributed data processing system comprises a system-level service processor along with one or more node-level service processors; each are uniquely associated with a node, and each is extended to comprise any components that are necessary for operating the nodes as trusted platforms, such as a TPM and a CRTM in accordance with the security model of the Trusted Computing Group. These node-level service processors then inter-operate with the system-level service processor, which also contains any components that are necessary for operating the system as a whole as a trusted platform. A TPM within the system-level service processor aggregates integrity metrics that are gathered by the node-level service processors, thereafter reporting integrity metrics as requested, e.g., to a hypervisor, thereby allowing a large distributed data processing system to be validated as a trusted computing environment while allowing its highly parallelized initialization process to proceed.
摘要:
A method, apparatus, and computer program product are described for asserting physical presence in a trusted computing environment included within a data processing system. The trusted computing environment includes a trusted platform module (TPM). The data processing system is coupled to a hardware management console. The trusted platform module determines whether the hardware management console is a trusted entity. The trusted platform module also determines whether the hardware management console has knowledge of a secret key that is possessed by the TPM. If the TPM determines that the hardware management console is a trusted entity and has knowledge of the secret key, the TPM determines that physical presence has been asserted. Otherwise, if the TPM determines that either the hardware management console is not a trusted entity or the TPM determines that the hardware management console does not have knowledge of the secret key, the TPM determines that physical presence has not been asserted and will not execute commands that require the successful assertion of “physical presence”.
摘要:
A method is presented for implementing a trusted computing environment within a data processing system. A hypervisor is initialized within the data processing system, and the hypervisor supervises a plurality of logical, partitionable, runtime environments within the data processing system. The hypervisor reserves a logical partition for a hypervisor-based trusted platform module (TPM) and presents the hypervisor-based trusted platform module to other logical partitions as a virtual device via a device interface. Each time that the hypervisor creates a logical partition within the data processing system, the hypervisor also instantiates a logical TPM within the reserved partition such that the logical TPM is anchored to the hypervisor-based TPM. The hypervisor manages multiple logical TPM's within the reserved partition such that each logical TPM is uniquely associated with a logical partition.