摘要:
The present invention contemplates a system and method for controlling or adjusting the accuracy of an exhaust gas sensor utilizing the impedance of the sensing element. In one embodiment, a periodic AC signal is superimposed over low frequency or DC output signal produced by the gas sensor. The AC current flowing through the gas sensor is a function of the actual impedance of the sensor, which is in turn a function of the temperature of the sensor. Thus, the invention further contemplates an impedance sensor circuit connected to an output of the gas sensor. The output of the impedance sensor circuit is a peak voltage that is indicative of the AC voltage drop across the sensor, and ultimately the impedance of the sensing element. This peak voltage is utilized to control the operation of the heating element in a closed loop control system in which the thermal output of the heating element is continuously varied as a function of the magnitude signal to accurately maintain a consistent temperature for the exhaust gas sensor. In a specific embodiment of the invention, the impedance sensor circuitry includes a bandpass filter centered around the frequency of the superimposed AC signal to eliminate spurious noise. The output from the bandpass filter is provided to a half-wave rectifier, the output of which is the peak voltage signal indicative of the sensor impedance.
摘要:
The cold junction temperature of the channels on a multi-channel terminal block are accurately determined for each terminal pair without affixing a thermistor to each terminal. One embodiment provides accurate cold junction measurement of a six channel device (12 terminals) by mounting or directly affixing only three sensors (e.g., thermistors). The present technique decreases cost by reducing the number of sensors to less than the number of channels or terminals, while providing for accurate cold junction measurement at each channel.