摘要:
Content such as computer software, data representing audiovisual works, and electronic documents can converted from a machine-bound state to user-bound state without modification to the content data itself. Instead, keys used to access the content are converted from the machine-bound state to the user-bound state. In particular, the keys are kept in a passport data structure which can represent either a machine-binding or a user-binding. A machine-bound passport can be upgraded to a user-bound passport without modifying the bound content. The private key of the machine-bound passport, in cleartext form, is included in the user-bound passport and encrypted using a user-supplied password to bind the private key to the user. In addition, private user information is collected and verified and included in the user-bound passport. Upgrading a machine-bound passport can be initiated automatically upon detection that an attempt is made to play back machine-bound content on a machine other than the one to which the content is bound.
摘要:
Content such as computer software, data representing audiovisual works, and electronic documents can converted from a machine-bound state to user-bound state without modification to the content data itself. Instead, keys used to access the content are converted from the machine-bound state to the user-bound state. In particular, the keys are kept in a passport data structure which can represent either a machine-binding or a user-binding. A machine-bound passport can be upgraded to a user-bound passport without modifying the bound content. The private key of the machine-bound passport, in cleartext form, is included in the user-bound passport and encrypted using a user-supplied password to bind the private key to the user. In addition, private user information is collected and verified and included in the user-bound passport. Upgrading a machine-bound passport can be initiated automatically upon detection that an attempt is made to play back machine-bound content on a machine other than the one to which the content is bound.
摘要:
Essentially all of the processing parameters which control processing of a source audio signal to produce an encoded audio signal are stored in an audio processing profile. Multiple audio processing profiles are stored in a processing profile database such that specific combinations of processing parameters can be retrieved and used at a later time. Audio processing profiles are organized according to specific delivery bandwidths such that a sound engineer can quickly and efficiently encode audio signals for each of a number of distinct delivery media. Synchronized A/B switching during playback of various encoded audio signals allows the sound engineer to detect nuances in the sound characteristics of the various encoded audio signals.
摘要:
To provide improved security in adjunct program modules such as plug-ins and dynamic link libraries, a requesting module provides an authorization interface to the invoked module such that the invoked module can require a certificate of the requesting module and can also challenge the authority of the requesting module. The certificate can include one or more permissions which are prerequisites for processing by the invoked module. The invoked module can challenge the authority of the requesting module by sending random test data to the requesting module and receiving in response a cryptographic signature of the test data. By verifying the signature of the requesting module using the received certificate, the invoked module confirms that the requesting module is, in fact, the owner of the receive certificate.
摘要:
To provide improved security in adjunct program modules such as plug-ins and dynamic link libraries, a requesting module provides an authorization interface to the invoked module such that the invoked module can require a certificate of the requesting module and can also challenge the authority of the requesting module. The certificate can include one or more permissions which are prerequisites for processing by the invoked module.The invoked module can challenge the authority of the requesting module by sending random test data to the requesting module and receiving in response a cryptographic signature of the test data. By verifying the signature of the requesting module using the received certificate, the invoked module confirms that the requesting module is, in fact, the owner of the receive certificate.
摘要:
Essentially all of the processing parameters which control processing of a source audio signal to produce an encoded audio signal are stored in an audio processing profile. Multiple audio processing profiles are stored in a processing profile database such that specific combinations of processing parameters can be retrieved and used at a later time. Audio processing profiles are organized according to specific delivery bandwidths such that a sound engineer can quickly and efficiently encode audio signals for each of a number of distinct delivery media. Synchronized A/B switching during playback of various encoded audio signals allows the sound engineer to detect nuances in the sound characteristics of the various encoded audio signals.
摘要:
To provide improved security in adjunct program modules such as plug-ins and dynamic link libraries, a requesting module provides an authorization interface to the invoked module such that the invoked module can require a certificate of the requesting module and can also challenge the authority of the requesting module. The certificate can include one or more permissions which are prerequisites for processing by the invoked module. The invoked module can challenge the authority of the requesting module by sending random test data to the requesting module and receiving in response a cryptographic signature of the test data. By verifying the signature of the requesting module using the received certificate, the invoked module confirms that the requesting module is, in fact, the owner of the receive certificate.
摘要:
Essentially all of the processing parameters which control processing of a source audio signal to produce an encoded audio signal are stored in an audio processing profile. Multiple audio processing profiles are stored in a processing profile database such that specific combinations of processing parameters can be retrieved and used at a later time. Audio processing profiles are organized according to specific delivery bandwidths such that a sound engineer can quickly and efficiently encode audio signals for each of a number of distinct delivery media. Synchronized A/B switching during playback of various encoded audio signals allows the sound engineer to detect nuances in the sound characteristics of the various encoded audio signals.
摘要:
Essentially all of the processing parameters which control processing of a source audio signal to produce an encoded audio signal are stored in an audio processing profile. Multiple audio processing profiles are stored in a processing profile database such that specific combinations of processing parameters can be retrieved and used at a later time. Audio processing profiles are organized according to specific delivery bandwidths such that a sound engineer can quickly and efficiently encode audio signals for each of a number of distinct delivery media. Synchronized A/B switching during playback of various encoded audio signals allows the sound engineer to detect nuances in the sound characteristics of the various encoded audio signals.
摘要:
Watermark data is encoded in a digitized signal by forming a noise threshold spectrum which represents a maximum amount of imperceptible noise, spread-spectrum chipping the noise threshold spectrum with a relatively endless stream of pseudo-random bits to form a basis signal, dividing the basis signal into segments, and filtering the segments to smooth segment boundaries. The data encoded in the watermark signal is precoded to make the watermark data inversion robust and is convolutional encoded to further increase the likelihood that the watermark data will subsequently be retrievable notwithstanding lossy processing of the watermarked signal. Watermark data is encoded in a basis signal by division of the basis signal into segments and inverting the basis signal in segments corresponding to watermark data bits with a first logical value and not inverting the basis signal in segment corresponding to watermark data bits with a different logical value. The basis signal is smoothed at segment boundaries to eliminate any such discontinuities. Good results are achieved when scaling the basis signal by a cube-root of the positive half of a sine function which is aligned with segment boundaries such that the cube-root sine function tapers to zero at segment boundaries.