摘要:
A packet control component of an apparatus in one example monitors a data stream that comprises a plurality of data packets. The plurality of data packets comprise one or more first data packets associated with a real-time application and one or more second data packets non-associated with the real-time application. Upon a detection in the data stream of a data packet of the one or more first data packets, the packet control component initiates a network treatment for the data packet that is different from one or more network treatments applicable to the one or more second data packets.
摘要:
The Aircraft IP Subnet System provides wireless communication services to passengers located onboard an aircraft by storing data indicative of individually identified wireless devices that are located onboard the aircraft. The Aircraft IP Subnet System assigns a single IP address to each Point-to-Point Protocol link connecting the aircraft network to the ground-based communication network and creates an IP subnet onboard the aircraft. The IP subnet utilizes a plurality of IP addresses for each Point-to-Point link, thereby to enable each passenger wireless device to be uniquely identified with their own IP address. This is enabled since both Point-to-Point Protocol IPCP endpoints have pre-defined IP address pools and/or topology configured, so each Point-to-Point Protocol endpoint can utilize a greater number of IP addresses than one per link. Such an approach does not change IPCP or other EVDO protocols/messaging but allows this address to be directly visible to the ground-based communication network.
摘要:
The Aircraft Air-To-Ground IP Tunnel System provides wireless communication services to passengers located onboard an aircraft by storing data indicative of the individually identified passenger wireless devices located onboard the aircraft. The Aircraft Air-To-Ground IP Tunnel System assigns a single IP address to each Point-to-Point Protocol link connecting the aircraft network to the ground-based communication network and creates an IP subnet onboard the aircraft. The IP subnet utilizes a plurality of IP addresses for each Point-to-Point link, enabling each passenger wireless device to be uniquely identified with their own IP address. This is enabled since both Point-to-Point Protocol IPCP endpoints have pre-defined IP address pools and/or topology configured, so each Point-to-Point Protocol endpoint can utilize a greater number of IP addresses than one per link. Such an approach does not change IPCP or other EVDO protocols/messaging but allows this address to be directly visible to the ground-based communication network.
摘要:
The Aircraft Air-To-Ground IP Tunnel System provides wireless communication services to passengers located onboard an aircraft by storing data indicative of the individually identified passenger wireless devices located onboard the aircraft. The Aircraft Air-To-Ground IP Tunnel System assigns a single IP address to each Point-to-Point Protocol link connecting the aircraft network to the ground-based communication network and creates an IP subnet onboard the aircraft. The IP subnet utilizes a plurality of IP addresses for each Point-to-Point link, enabling each passenger wireless device to be uniquely identified with their own IP address. This is enabled since both Point-to-Point Protocol IPCP endpoints have pre-defined IP address pools and/or topology configured, so each Point-to-Point Protocol endpoint can utilize a greater number of IP addresses than one per link. Such an approach does not change IPCP or other EVDO protocols/messaging but allows this address to be directly visible to the ground-based communication network.
摘要:
The Aircraft Mobile IP Address System provides wireless communication services to passengers who are located onboard an aircraft by storing data indicative of the individually identified wireless devices located onboard the aircraft. The System assigns a single IP address to each Point-to-Point Protocol link which connects the aircraft network to the ground-based communication network but also creates an IP subnet onboard the aircraft. The IP subnet utilizes a plurality of IP addresses for each Point-to-Point link thereby to enable each passenger wireless device to be uniquely identified with their own IP address. This is enabled since both Point-to-Point Protocol IPCP endpoints have pre-defined IP address pools and/or topology configured; each Point-to-Point Protocol endpoint can utilize a greater number of IP addresses than one per link. Such an approach does not change IPCP or other EVDO protocols/messaging but does allow this address to be directly visible to the ground-based communication network.
摘要:
The Aircraft Mobile IP Address System provides wireless communication services to passengers who are located onboard an aircraft by storing data indicative of the individually identified wireless devices located onboard the aircraft. The System assigns a single IP address to each Point-to-Point Protocol link which connects the aircraft network to the ground-based communication network but also creates an IP subnet onboard the aircraft. The IP subnet utilizes a plurality of IP addresses for each Point-to-Point link thereby to enable each passenger wireless device to be uniquely identified with their own IP address. This is enabled since both Point-to-Point Protocol IPCP endpoints have pre-defined IP address pools and/or topology configured; each Point-to-Point Protocol endpoint can utilize a greater number of IP addresses than one per link. Such an approach does not change IPCP or other EVDO protocols/messaging but does allow this address to be directly visible to the ground-based communication network.
摘要:
Networks and methods are disclosed for synchronizing time stamps of peer devices. In one embodiment, a first communication node comprised of peer devices is connected to a second communication node. The first and second communication nodes communicate according to a protocol that requires monotonically increasing time stamps. When in operation, a peer device transmits a message to the second communication node with a time stamp. If the peer device receives an error response from the second communication node indicating that the time stamp does not comprise an increasing time stamp, then the peer device increases the time stamp. The peer device then transmits the message to the second communication node with the increased time stamp. This process continues each time the peer device receives an error response from the second communication node until the time stamp is increased sufficiently to comprise a monotonically increasing time stamp.
摘要:
The VoIP Management System is capable of identifying voice-based wireless devices and denying wireless communication services to these devices. The VoIP Management System also identifies VoIP packet data traffic, and this communication connection can be denied. The VoIP Management System can also identify encrypted VoIP packet data traffic (for a unique Source -Destination IP pair) based upon VoIP packet data traffic characteristics: packet timing, packet rate, and packet size, since VoIP services have a distinct packet data traffic pattern. When a VoIP call is detected, the VoIP Management System disrupts the identified VoIP packet data traffic, without modifying the packet data content, such as by adding sufficient latency to the Packet Data Unit of the packet data traffic to make the VoIP services unusable.
摘要:
The Aircraft Air-To-Ground IP Tunnel System provides wireless communication services to passengers located onboard an aircraft by storing data indicative of the individually identified passenger wireless devices located onboard the aircraft. The Aircraft Air-To-Ground IP Tunnel System assigns a single IP address to each Point-to-Point Protocol link connecting the aircraft network to the ground-based communication network and creates an IP subnet onboard the aircraft. The IP subnet utilizes a plurality of IP addresses for each Point-to-Point link, enabling each passenger wireless device to be uniquely identified with their own IP address. This is enabled since both Point-to-Point Protocol IPCP endpoints have pre-defined IP address pools and/or topology configured, so each Point-to-Point Protocol endpoint can utilize a greater number of IP addresses than one per link. Such an approach does not change IPCP or other EVDO protocols/messaging but allows this address to be directly visible to the ground-based communication network.
摘要:
Networks and methods are disclosed for synchronizing time stamps of peer devices. In one embodiment, a first communication node comprised of peer devices is connected to a second communication node. The first and second communication nodes communicate according to a protocol that requires monotonically increasing time stamps. When in operation, a peer device transmits a message to the second communication node with a time stamp. If the peer device receives an error response from the second communication node indicating that the time stamp does not comprise an increasing time stamp, then the peer device increases the time stamp. The peer device then transmits the message to the second communication node with the increased time stamp. This process continues each time the peer device receives an error response from the second communication node until the time stamp is increased sufficiently to comprise a monotonically increasing time stamp.