摘要:
Described techniques and tools include techniques and tools for mapping digital media data (e.g., audio, video, still images, and/or text, among others) in a given format to a transport or file container format useful for encoding the data on optical disks such as digital video disks (DVDs). A digital media universal elementary stream can be used to map digital media streams (e.g., an audio stream, video stream or an image) into any arbitrary transport or file container, including optical disk formats, and other transports, such as broadcast streams, wireless transmissions, etc. The information to decode any given frame of the digital media in the stream can be carried in each coded frame. A digital media universal elementary stream includes stream components called chunks. An implementation of a digital media universal elementary stream arranges data for a media stream in frames, the frames having one or more chunks.
摘要:
Described techniques and tools include techniques and tools for mapping digital media data (e.g., audio, video, still images, and/or text, among others) in a given format to a transport or file container format useful for encoding the data on optical disks such as digital video disks (DVDs). A digital media universal elementary stream can be used to map digital media streams (e.g., an audio stream, video stream or an image) into any arbitrary transport or file container, including optical disk formats, and other transports, such as broadcast streams, wireless transmissions, etc. The information to decode any given frame of the digital media in the stream can be carried in each coded frame. A digital media universal elementary stream includes stream components called chunks. An implementation of a digital media universal elementary stream arranges data for a media stream in frames, the frames having one or more chunks.
摘要:
Described techniques and tools include techniques and tools for mapping digital media data (e.g., audio, video, still images, and/or text, among others) in a given format to a transport or file container format useful for encoding the data on optical disks such as digital video disks (DVDs). A digital media universal elementary stream can be used to map digital media streams (e.g., an audio stream, video stream or an image) into any arbitrary transport or file container, including optical disk formats, and other transports, such as broadcast streams, wireless transmissions, etc. The information to decode any given frame of the digital media in the stream can be carried in each coded frame. A digital media universal elementary stream includes stream components called chunks. An implementation of a digital media universal elementary stream arranges data for a media stream in frames, the frames having one or more chunks.
摘要:
Described techniques and tools include techniques and tools for mapping digital media data (e.g., audio, video, still images, and/or text, among others) in a given format to a transport or file container format useful for encoding the data on optical disks such as digital video disks (DVDs). A digital media universal elementary stream can be used to map digital media streams (e.g., an audio stream, video stream or an image) into any arbitrary transport or file container, including optical disk formats, and other transports, such as broadcast streams, wireless transmissions, etc. The information to decode any given frame of the digital media in the stream can be carried in each coded frame. A digital media universal elementary stream includes stream components called chunks. An implementation of a digital media universal elementary stream arranges data for a media stream in frames, the frames having one or more chunks.
摘要:
An audio encoder and decoder use architectures and techniques that improve the efficiency of multi-channel audio coding and decoding. The described strategies include various techniques and tools, which can be used in combination or independently. For example, an audio encoder performs a pre-processing multi-channel transform on multi-channel audio data, varying the transform so as to control quality. The encoder groups multiple windows from different channels into one or more tiles and outputs tile configuration information, which allows the encoder to isolate transients that appear in a particular channel with small windows, but use large windows in other channels. Using a variety of techniques, the encoder performs flexible multi-channel transforms that effectively take advantage of inter-channel correlation. An audio decoder performs corresponding processing and decoding. In addition, the decoder performs a post-processing multi-channel transform for any of multiple different purposes.
摘要:
An audio encoder and decoder use architectures and techniques that improve the efficiency of quantization (e.g., weighting) and inverse quantization (e.g., inverse weighting) in audio coding and decoding. The described strategies include various techniques and tools, which can be used in combination or independently. For example, an audio encoder quantizes audio data in multiple channels, applying multiple channel-specific quantizer step modifiers, which give the encoder more control over balancing reconstruction quality between channels. The encoder also applies multiple quantization matrices and varies the resolution of the quantization matrices, which allows the encoder to use more resolution if overall quality is good and use less resolution if overall quality is poor. Finally, the encoder compresses one or more quantization matrices using temporal prediction to reduce the bitrate associated with the quantization matrices. An audio decoder performs corresponding inverse processing and decoding.
摘要:
An audio processing tool measures the quality of reconstructed audio data. For example, an audio encoder measures the quality of a block of reconstructed frequency coefficient data in a quantization loop. The invention includes several techniques and tools, which can be used in combination or separately. First, before measuring quality, the tool normalizes the block to account for variation in block sizes. Second, for the quality measurement, the tool processes the reconstructed data by critical bands, which can differ from the quantization bands used to compress the data. Third, the tool accounts for the masking effect of the reconstructed data, not just the masking effect of the original data. Fourth, the tool band weights the quality measurement, which can be used to account for noise substitution or band truncation. Finally, the tool changes quality measurement techniques depending on the channel coding mode.
摘要:
An audio encoder regulates quality and bitrate with a control strategy. The strategy includes several features. First, an encoder regulates quantization using quality, minimum bit count, and maximum bit count parameters. Second, an encoder regulates quantization using a noise measure that indicates reliability of a complexity measure. Third, an encoder normalizes a control parameter value according to block size for a variable-size block. Fourth, an encoder uses a bit-count control loop de-linked from a quality control loop. Fifth, an encoder addresses non-monotonicity of quality measurement as a function of quantization level when selecting a quantization level. Sixth, an encoder uses particular interpolation rules to find a quantization level in a quality or bit-count control loop. Seventh, an encoder filters a control parameter value to smooth quality. Eighth, an encoder corrects model bias by adjusting a control parameter value in view of current buffer fullness.
摘要:
An audio encoder implements multi-channel coding decision, band truncation, multi-channel rematrixing, and header reduction techniques to improve quality and coding efficiency. In the multi-channel coding decision technique, the audio encoder dynamically selects between joint and independent coding of a multi-channel audio signal via an open-loop decision based upon (a) energy separation between the coding channels, and (b) the disparity between excitation patterns of the separate input channels. In the band truncation technique, the audio encoder performs open-loop band truncation at a cut-off frequency based on a target perceptual quality measure. In multi-channel rematrixing technique, the audio encoder suppresses certain coefficients of a difference channel by scaling according to a scale factor, which is based on current average levels of perceptual quality, current rate control buffer fullness, coding mode, and the amount of channel separation in the source. In the header reduction technique, the audio encoder selectively modifies the quantization step size of zeroed quantization bands so as to encode in fewer frame header bits.
摘要:
Techniques and tools for reordering of spectral coefficients in encoding and decoding are described herein. For certain types and patterns of content, coefficient reordering reduces redundancy that is due to periodic patterns in the spectral coefficients, making subsequent entropy encoding more efficient. For example, an audio encoder receives spectral coefficients logically organized along one dimension such as frequency, reorders at least some of the spectral coefficients, and entropy encodes the spectral coefficients after the reordering. Or, an audio decoder receives entropy encoded information for such spectral coefficients, entropy decodes the information, and reverses reordering of at least some of the spectral coefficients.