摘要:
Basalt filament is manufactured in such a manner that the fiber diameter can be controlled and the filament is not severed during the winding step. A network former and a glass modifier are formed and maintained with respect to basalt rock ore, and the crystallization and binding of basalt fiber are inhibited, the heat-resistance property of basalt fiber is greatly improved from the conventional 750° C. to 850 or 900° C., and significant cost reduction is achieved over conventional products. The method includes the steps of: grinding basalt rock as a material; washing a resultant ground rock; melting the ground rock that has been washed; transforming a molten product into fiber; and drawing the fiber in an aligned manner, and winding it. The temperature of the molten product in the melting step is 1400 to 1650° C., and log η is 2.15 to 2.35 dPa·s and preferably 2.2 to 2.3 dPa·s, where η is the viscosity of the molten product.
摘要:
A network former and a glass modifier are formed and maintained by using basalt rock ore, and the crystallization and binding of basalt fiber are inhibited The heat-resistance property of basalt fiber is greatly improved from the conventional 750° C. to 850 or 900° C., and significant cost reduction is achieved over conventional products. Basalt fiber material having basalt rock as a raw material to which one or more kinds of oxide selected from Al2O3, SiO2, CaO, and MgO is added, and basalt fiber material having two kinds of basalt rock containing different amounts of elements as raw materials are provided.
摘要翻译:通过使用玄武岩矿石形成并维持网络成型体和玻璃改性剂,并且抑制玄武岩纤维的结晶和结合玄武岩纤维的耐热性能从传统的750℃大大提高到850或900℃ C.与常规产品相比,实现了显着的成本降低。 玄武岩纤维材料,其中以玄武岩岩石为原料,选自一种或多种选自Al 2 O 3,SiO 2,CaO, ,添加MgO,并且提供具有含有不同量的元素作为原料的两种玄武岩岩石的玄武岩纤维材料。
摘要:
Provided is a sub-muffler which needs no heat resistant material such as SUS, and which can keep its durability and sound absorbing performance even when the sub-muffler is exposed to various corrosive components in the exhaust gas. At the same time, accomplished is a low-cost manufacture, which is a challenge that sub-mufflers and sound absorbing materials commonly face. Disclosed is a sub-muffler in which a perforated exhaust pipe is arranged, and caps and an out pipe are arranged outside the perforated pipe. Sound absorbing materials are filled in the space between the perforated exhaust pipe, and the caps and the out pipe. The sub-muffler is characterized in that, among the sound absorbing materials, at least part of the sound absorbing material of the perforated pipe side is a basalt fiber for high temperature.
摘要:
Basalt filament is manufactured in such a manner that the fiber diameter can be controlled and the filament is not severed during the winding step. A network former and a glass modifier are formed and maintained with respect to basalt rock ore, and the crystallization and binding of basalt fiber are inhibited, the heat-resistance property of basalt fiber is greatly improved from the conventional 750° C. to 850 or 900° C., and significant cost reduction is achieved over conventional products. The method includes the steps of: grinding basalt rock as a material; washing a resultant ground rock; melting the ground rock that has been washed; transforming a molten product into fiber; and drawing the fiber in an aligned manner, and winding it. The temperature of the molten product in the melting step is 1400 to 1650° C., and logη is 2.15 to 2.35 dPa·s and preferably 2.2 to 2.3 dPa·s, where η is the viscosity of the molten product.
摘要:
Basalt filament is manufactured such that the fiber diameter can be controlled and the filament is not severed during winding. A network former and a glass modifier are formed and maintained with respect to basalt rock ore, and the crystallization and binding of basalt fiber are inhibited, the heat-resistance property of basalt fiber is greatly improved from the conventional 750° C. to 850 or 900° C., and significant cost reduction is achieved over conventional products. The method includes: grinding basalt rock as a material; washing a resultant ground rock; melting the ground rock that has been washed; transforming a molten product into fiber; and drawing the fiber in an aligned manner, and winding it. The temperature of the molten product in the melting step is 1400 to 1650° C., and log η is 2.15 to 2.35 dPa·s and preferably 2.2 to 2.3 dPa·s, where η is the viscosity of the molten product.
摘要:
Provided is a sub-muffler which needs no heat resistant material such as SUS, and which can keep its durability and sound absorbing performance even when the sub-muffler is exposed to various corrosive components in the exhaust gas. At the same time, accomplished is a low-cost manufacture, which is a challenge that sub-mufflers and sound absorbing materials commonly face. Disclosed is a sub-muffler in which a perforated exhaust pipe is arranged, and caps and an out pipe are arranged outside the perforated pipe. Sound absorbing materials are filled in the space between the perforated exhaust pipe, and the caps and the out pipe. The sub-muffler is characterized in that, among the sound absorbing materials, at least part of the sound absorbing material of the perforated pipe side is a basalt fiber for high temperature.
摘要:
Basalt filament is manufactured such that the fiber diameter can be controlled and the filament is not severed during winding. A network former and a glass modifier are formed and maintained with respect to basalt rock ore, and the crystallization and binding of basalt fiber are inhibited, the heat-resistance property of basalt fiber is greatly improved from the conventional 750° C. to 850 or 900° C., and significant cost reduction is achieved over conventional products. The method includes: grinding basalt rock as a material; washing a resultant ground rock; melting the ground rock that has been washed; transforming a molten product into fiber; and drawing the fiber in an aligned manner, and winding it. The temperature of the molten product in the melting step is 1400 to 1650° C., and log η is 2.15 to 2.35 dPa·s and preferably 2.2 to 2.3 dPa·s, where η is the viscosity of the molten product.
摘要:
A network former and a glass modifier are formed and maintained by using basalt rock ore, and the crystallization and binding of basalt fiber are inhibited The heat-resistance property of basalt fiber is greatly improved from the conventional 750° C. to 850 or 900° C., and significant cost reduction is achieved over conventional products. Basalt fiber material having basalt rock as a raw material to which one or more kinds of oxide selected from Al2O3, SiO2, CaO, and MgO is added, and basalt fiber material having two kinds of basalt rock containing different amounts of elements as raw materials are provided.
摘要:
This invention provides carbon composite materials, which comprise metal carbide particles, at least the particle surfaces or the entirety of which are metal carbides, synthesized in situ from a metal source, i.e., at least one member selected from the group comprising metal particles, metal oxide particles, and composite metal oxide particles, and a carbon source, i.e., a thermosetting resin, dispersed in a carbon, carbon fiber, or carbon/carbon fiber matrix, and contain no free metal particles. This invention also provides a method for producing such composite carbon materials, which enables the production of carbon composite materials having a high coefficient of friction, high thermostability, and abrasion resistance.
摘要:
This invention provides carbon composite materials, which comprise metal carbide particles, at least the particle surfaces or the entirety of which are metal carbides, synthesized in situ from a metal source, i.e., at least one member selected from the group comprising metal particles, metal oxide particles, and composite metal oxide particles, and a carbon source, i.e., a thermosetting resin, dispersed in a carbon, carbon fiber, or carbon/carbon fiber matrix, and contain no free metal particles. This invention also provides a method for producing such composite carbon materials, which enables the production of carbon composite materials having a high coefficient of friction, high thermostability, and abrasion resistance.