Methods for enhanced detection & analysis of differentially expressed genes using gene chip microarrays
    2.
    发明申请
    Methods for enhanced detection & analysis of differentially expressed genes using gene chip microarrays 失效
    使用基因芯片微阵列增强检测和分析差异表达基因的方法

    公开(公告)号:US20050181399A1

    公开(公告)日:2005-08-18

    申请号:US11031463

    申请日:2005-01-07

    CPC分类号: G01N33/6803

    摘要: A method for enhanced detection and statistical analysis of differentially expressed genes in gene chip microarrays employs: (a) transformation of gene expression data into an expression data matrix (image data paradigm); (b) wavelet denoising of expression data matrix values to enhance their signal-to-noise ratio; and (c) singular value decomposition (SVD) of the wavelet-denoised expression data matrix to concentrate most of the gene expression signal in primary matrix eigenarrays to enhance the separation of true gene expression values from background noise. The transformation of gene chip data into an image data paradigm facilitates the use of powerful image data processing techniques, including a generalized logarithm (g-log) function to stabilize variance over intensity, and the WSVD combination of wavelet packet transform and denoising and SVD to clearly enhance separation of the truly changed genes from background noise. Detection performance can be assessed using a true false discovery rate (tFDR) computed for simulated gene expression data, and comparing it to estimated FDR (eFDR) rates based on permutations of the available data. Where a small number (N) of samples in a group is involved, a pair of specific WSVD algorithms are employed complementarily if N>5 and if N

    摘要翻译: 用于增强基因芯片微阵列差异表达基因检测和统计分析的方法采用:(a)将基因表达数据转化为表达数据矩阵(图像数据范例); (b)表达式数据矩阵值的小波去噪,以增强其信噪比; 和(c)小波去噪表达数据矩阵的奇异值分解(SVD),将大部分基因表达信号集中在主基本特征阵列中,以增强真实基因表达值与背景噪声的分离。 将基因芯片数据转换为图像数据范例有助于使用强大的图像数据处理技术,包括广义对数(g-log)函数来稳定强度方差,以及小波包变换和去噪的SVD组合和SVD 明确增强真正改变的基因与背景噪声的分离。 可以使用针对模拟基因表达数据计算的真实假发现率(tFDR)来评估检测性能,并根据可用数据的排列将其与估计的FDR(eFDR)率进行比较。 如果一组中的少数(N)个样本涉及,则如果N> 5并且如果N <6,则采用一对特定的WSVD算法。