Abstract:
A magnetic head includes a main magnetic pole used to apply a recording signal magnetic field to a magnetic recording medium and also includes a microwave line through which a microwave alternating current is transferred. The microwave line is connected to the main magnetic pole. The entire end surface of the main magnetic pole is positioned closer to air bearing surface than a connection portion at which the microwave line and main magnetic pole are mutually connected. Therefore, microwave assisted magnetic recording is possible without deteriorating the recording signal magnetic field.
Abstract:
A magnetic head includes a microwave-generating element connected to a ground line. The ground line is made shorter by connecting the ground line to a conductive slider substrate so that the microwave-generating element is in a short-circuited end condition. This allows a microwave excitation current to be efficiently supplied to the microwave-generating-element, thus enabling effective microwave-assisted recording.
Abstract:
A base multilayer body is made by laminating a seed layer and a buffer layer in respective order. The seed layer is an alloy layer containing tantalum (Ta) and at least one type of other metal, and having an amorphous structure or a microcrystal structure. The buffer layer is an alloy layer having a [001] plane orientation hexagonal close-packed structure and containing at least one type of a group VI metal and at least one type of a group IX metal in the periodic table. With this configuration, a magnetic layer providing a desired magnetic characteristic(s) can be laminated on the thinned base multilayer body.
Abstract:
A magnetic recording and reproducing apparatus includes a magnetic recording medium including a recording layer in which at least two magnetic layers are layered on a non-magnetic substrate; and a magnetic head including a main magnetic pole for applying a recording magnetic field in a direction substantially perpendicular to a recording face of the magnetic recording medium and a microwave generating element that generates a microwave magnetic field. The relationship between a thickness Ts of a magnetic layer having a lowest magnetic anisotropy energy among the at least two magnetic layers composing the recording layer of the magnetic recording medium, and a thickness Tt of the recording layer is Ts/Tt≦0.2. The microwave generating element applies the microwave magnetic field having a width broader than the width of the recording magnetic field generated by the main magnetic pole of the magnetic head to the magnetic recording medium.
Abstract:
A microwave assisted magnetic head includes a main magnetic pole; a trailing shield; and a spin torque oscillator provided between the main magnetic pole and the trailing shield. The spin torque oscillator has a first end surface configuring a part of an air bearing surface, a second end surface facing the main magnetic pole, and a third end surface facing the first end surface, the first angle θ1 made by the first end surface and the second end surface is smaller than the second angle θ2 formed by the second end surface and the third end surface, and the second angle θ2 is 80 to 100 degrees.
Abstract:
Ion irradiation is applied to the surface of a recording layer which has a granular structure containing ferromagnetic particles which are composed of an L10 ordered alloy and a non-magnetic intergranular layer, thereby the ferromagnetic particles in the side of the substrate are transformed into an L10 ordered alloy having a high magnetic anisotropy, and the ferromagnetic particles in the side of the surface of the medium are transformed into an A1 disordered alloy having a low magnetic anisotropy.