THERMOELECTRIC CONVERSION ELEMENT AND MANUFACTURING METHOD THEREOF

    公开(公告)号:US20220320410A1

    公开(公告)日:2022-10-06

    申请号:US17640213

    申请日:2020-10-05

    Abstract: To obtain a high thermoelectromotive voltage with a simple structure in a thermoelectric conversion element with a magnetization direction, a temperature gradient direction, and an electromotive force direction mutually orthogonal. A thermoelectric conversion element 1 includes a tape-like member 10 including an insulating film and a thermoelectric material layer formed on the surface of the insulating film and having a magnetization direction, a temperature gradient direction, and an electromotive force direction which are mutually orthogonal and a pair of terminal electrodes E1 and E2 connected to the thermoelectric material layer at positions different in the longitudinal direction thereof. The tape-like member 10 is wound with the longitudinal direction thereof directed to the circumferential direction, and the thermoelectric material layer is radially magnetized. Thus, the radially magnetized tape-like thermoelectric material layer is circumferentially wound, so that a thermoelectromotive voltage can be generated in accordance with a temperature gradient in the axial direction. In addition, the electromotive force occurs circumferentially, making the structure of the tape-like member simple.

    THERMOELECTRIC CONVERSION ELEMENT AND THERMOELECTRIC CONVERSION DEVICE HAVING THE SAME

    公开(公告)号:US20220336724A1

    公开(公告)日:2022-10-20

    申请号:US17639754

    申请日:2020-10-05

    Abstract: To increase thermoelectromotive voltage of a thermoelectric conversion element with a magnetization direction, a temperature gradient direction, and an electromotive force direction orthogonal to each other. A thermoelectric conversion element 1 is formed by annularly winding a thermoelectric material which is radially magnetized and circumferentially generates an electromotive force in accordance with a temperature gradient in the axial direction thereof. Thus, the thermoelectric material is wound not linearly but annularly, so that a connection line for connecting a plurality of thermoelectric materials is not necessary. In particular, when the thermoelectric material is wound in a plurality of turns, the length per unit area of the thermoelectric material in the direction of the electromotive force can be significantly increased, making it possible to significantly increase thermoelectromotive voltage while suppressing increase in the size of the element.

Patent Agency Ranking