Jacketed rotary converter and PGM converting process

    公开(公告)号:US10648059B2

    公开(公告)日:2020-05-12

    申请号:US16508659

    申请日:2019-07-11

    Applicant: Techemet, LP

    Abstract: Jacketed rotary converter. The converter includes an inclined pot mounted for rotation about a longitudinal axis, a refractory lining for holding a molten alloy pool, an opening in a top of the pot for introducing feed, a lance for injecting oxygen-containing gas, a heat transfer jacket for the pot adjacent the refractory lining, and a coolant system to circulate a heat transfer medium through the jacket to remove heat from the alloy pool in thermal communication with the refractory lining. Also disclosed is a PGM converting process using the jacketed rotary converter. The process can also include low-or no-flux converting; refractory protectant addition; slag separation; partial feed pre-oxidation; staged slagging; and/or smelting the slag in a secondary furnace with primary furnace slag.

    PGM Converting Process with Staged Slagging
    2.
    发明申请

    公开(公告)号:US20190338391A1

    公开(公告)日:2019-11-07

    申请号:US16508582

    申请日:2019-07-11

    Applicant: Techemet, LP

    Abstract: PGM converting process with staged slagging. The process includes melting an initial collector alloy charge to start a converter cycle, introducing feed and injecting oxygen into the alloy pool, allowing ferrous slag to collect, terminating feed introduction and oxygen injection to tap the slag, repeating the feed introduction/oxygen injection/slag tapping sequence a plurality of times, and then tapping the alloy to end the cycle. A delay before non-final slag tappings allows any entrained alloy to settle back into the alloy pool, but the final slag tapping is commenced promptly and alloy is optionally entrained. Slag from the final tapping that may contain entrained alloy can be recycled to the converter, e.g., in a subsequent cycle. The process can also include low- or no-flux converting; refractory protectant addition; slag separation; partial feed pre-oxidation; smelting the slag in a secondary furnace with primary furnace slag; and/or jacketing the converter.

    PGM CONVERTING PROCESS AND JACKETED ROTARY CONVERTER

    公开(公告)号:US20220177999A1

    公开(公告)日:2022-06-09

    申请号:US17436300

    申请日:2019-08-20

    Applicant: TECHEMET, LP

    Abstract: PGM converting process and jacketed rotary converter. The process can include low- or no-flux converting; partial pre-oxidation of PGM collector alloy; using a refractory protectant in the converter; magnetic separation of slag; recycling part of the slag to the converter; smelting catalyst material in a primary furnace to produce the collector alloy; and/or smelting the converter slag in a secondary furnace with slag from the primary furnace. The converter can include an inclined converter pot mounted for rotation; a refractory lining; an opening in a top of the pot to introduce converter feed; a lance for injecting oxygen-containing gas into the alloy pool; a heat transfer jacket adjacent the refractory lining; and a coolant system to circulate a heat transfer medium through the jacket to remove heat from the alloy pool in thermal communication with the refractory lining.

    Integrated PGM converting process

    公开(公告)号:US10513751B2

    公开(公告)日:2019-12-24

    申请号:US16508615

    申请日:2019-07-11

    Applicant: Techemet, LP

    Abstract: Integrated PGM converting process. The process includes smelting a catalyst material in a primary furnace, smelting the primary furnace slag in a secondary furnace, converting the collector alloys from the primary and secondary furnaces in a converter to recover PGM enriched alloy and converter slag, separating the recovered converter slag into first and second converter slag portions, and supplying the first converter slag portion to the secondary furnace for smelting with the primary furnace slag. The process can also include low- or no-flux converting; refractory protectant addition; magnetic slag separation; partial feed pre-oxidation; staged slagging; and/or jacketing the converter.

    PGM converting process with staged slagging

    公开(公告)号:US10513750B2

    公开(公告)日:2019-12-24

    申请号:US16508582

    申请日:2019-07-11

    Applicant: Techemet, LP

    Abstract: The process includes melting an initial collector alloy charge to start a converter cycle, introducing feed and injecting oxygen into the alloy pool, allowing ferrous slag to collect, terminating feed introduction and oxygen injection to tap the slag, repeating the feed introduction/oxygen injection/slag tapping sequence a plurality of times, and then tapping the alloy to end the cycle. A delay before non-final slag tappings allows any entrained alloy to settle back into the alloy pool, but the final slag tapping is commenced promptly and alloy is optionally entrained. Slag from the final tapping that may contain entrained alloy can be recycled to the converter, e.g., in a subsequent cycle. The process can also include low- or no-flux converting; refractory protectant addition; slag separation; partial feed pre-oxidation; smelting the slag in a secondary furnace with primary furnace slag; and/or jacketing the converter.

    Jacketed Rotary Converter and PGM Converting Process

    公开(公告)号:US20190338380A1

    公开(公告)日:2019-11-07

    申请号:US16508659

    申请日:2019-07-11

    Applicant: Techemet, LP

    Abstract: Jacketed rotary converter. The converter includes an inclined pot mounted for rotation about a longitudinal axis, a refractory lining for holding a molten alloy pool, an opening in a top of the pot for introducing feed, a lance for injecting oxygen-containing gas, a heat transfer jacket for the pot adjacent the refractory lining, and a coolant system to circulate a heat transfer medium through the jacket to remove heat from the alloy pool in thermal communication with the refractory lining. Also disclosed is a PGM converting process using the jacketed rotary converter. The process can also include low- or no-flux converting; refractory protectant addition; slag separation; partial feed pre-oxidation; staged slagging; and/or smelting the slag in a secondary furnace with primary furnace slag.

    Converting Process with Partial Pre-Oxidation of PGM Collector Alloy

    公开(公告)号:US20190330720A1

    公开(公告)日:2019-10-31

    申请号:US16507158

    申请日:2019-07-10

    Applicant: Techemet, LP

    Abstract: Converting process with partial pre-oxidation of PGM collector alloy. The process includes partially pre-oxidizing a raw alloy, introducing an initial charge of the partially pre-oxidized alloy into a converter pot, melting the initial charge, introducing converter feed to the pool, oxygen injection into the pool, tapping the slag, and tapping the PGM-enriched alloy. The collector alloy contains no less than 0.5 wt % PGM, 40 wt % iron, and 0.5 wt % nickel, and no more than 3 wt % sulfur and 3 wt % copper. The process can also include low- or no-flux converting; using a refractory protectant in the converter; magnetic separation of slag; recycling part of the slag to the converter; smelting catalyst material in a primary furnace to produce the collector alloy; and/or smelting the converter slag in a secondary furnace with slag from the primary furnace.

    Low-flux converting process for PGM collector alloy

    公开(公告)号:US10435767B2

    公开(公告)日:2019-10-08

    申请号:US16397441

    申请日:2019-04-29

    Applicant: Techemet, LP

    Abstract: A low-flux converting process for PGM collector alloy. The process includes feed introduction into a molten alloy pool, oxygen injection into the pool, tapping the slag, and tapping the PGM-enriched alloy. The collector alloy contains no less than 0.5 wt % PGM, 40 wt % iron, and 0.5 wt % nickel. If added flux material contains more than 10 wt % silica and 10 wt % CaO/MgO, the feed contains no more than 20 parts by weight added flux per hundred collector alloy. The process can also include using a refractory protectant in the converter; melting partially pre-oxidized collector alloy to form the initial molten alloy pool; magnetic separation of slag; recycling part of the slag to the converter; smelting catalyst material in a primary furnace to produce the collector alloy; and/or smelting the converter slag in a secondary furnace with slag from the primary furnace.

    Converting process with partial pre-oxidation of PGM collector alloy

    公开(公告)号:US10472700B1

    公开(公告)日:2019-11-12

    申请号:US16507158

    申请日:2019-07-10

    Applicant: Techemet, LP

    Abstract: Converting process with partial pre-oxidation of PGM collector alloy. The process includes partially pre-oxidizing a raw alloy, introducing an initial charge of the partially pre-oxidized alloy into a converter pot, melting the initial charge, introducing converter feed to the pool, oxygen injection into the pool, tapping the slag, and tapping the PGM-enriched alloy. The collector alloy contains no less than 0.5 wt % PGM, 40 wt % iron, and 0.5 wt % nickel, and no more than 3 wt % sulfur and 3 wt % copper. The process can also include low- or no-flux converting; using a refractory protectant in the converter; magnetic separation of slag; recycling part of the slag to the converter; smelting catalyst material in a primary furnace to produce the collector alloy; and/or smelting the converter slag in a secondary furnace with slag from the primary furnace.

    Converting Process with Slag Separation and Recycle

    公开(公告)号:US20190338393A1

    公开(公告)日:2019-11-07

    申请号:US16508551

    申请日:2019-07-11

    Applicant: Techemet, LP

    Abstract: Converting process with slag separation and recycle to the converter. The process includes introducing converter feed into the pot holding a molten alloy pool, oxygen injection into the pool, tapping the slag, and tapping the PGM-enriched alloy. The collector alloy contains no less than 0.5 wt % PGM, 40 wt % iron, and 0.5 wt % nickel, and no more than 3 wt % sulfur and 3 wt % copper, and the recovered slag is separated into recycle and non-recycle portions. The recycle slag portion preferably contains more PGM than the non-recycle portion. The process can also include low- or no-flux converting; using a refractory protectant in the converter; magnetic separation of slag; partial pre-oxidation of the converter feed; smelting catalyst material in a primary furnace to produce the collector alloy; and/or smelting the converter slag in a secondary furnace with slag from the primary furnace.

Patent Agency Ranking