Abstract:
A user-heading determining system (10) for pedestrian use includes a multiple-axis accelerometer (110) having acceleration sensors; a device-heading sensor circuit (115) physically situated in a fixed relationship to the accelerometer (110); an electronic circuit (100) operable to generate signals representing components of acceleration sensed by the accelerometer (110) sensors, and to electronically process at least some part of the signals to produce an estimation of attitude of a user motion with respect to the accelerometer, and further to combine the attitude estimation (750, α) with a device heading estimation (770, ψ) responsive to the device-heading sensor circuit, to produce a user heading estimation (780); and an electronic display (190) responsive to the electronic circuit (100) to display information at least in part based on the user heading estimation. Other systems, circuits and processes are also disclosed.
Abstract:
A user-heading determining system (10) for pedestrian use includes a multiple-axis accelerometer (110) having acceleration sensors; a device-heading sensor circuit (115) physically situated in a fixed relationship to the accelerometer (110); an electronic circuit (100) operable to generate signals representing components of acceleration sensed by the accelerometer (110) sensors, and to electronically process at least some part of the signals to produce an estimation of attitude of a user motion with respect to the accelerometer, and further to combine the attitude estimation (750, α) with a device heading estimation (770, ψ) responsive to the device-heading sensor circuit, to produce a user heading estimation (780); and an electronic display (190) responsive to the electronic circuit (100) to display information at least in part based on the user heading estimation. Other systems, circuits and processes are also disclosed.
Abstract:
A user-heading determining system (10) for pedestrian use includes a multiple-axis accelerometer (110) having acceleration sensors; a device-heading sensor circuit (115) physically situated in a fixed relationship to the accelerometer (110); an electronic circuit (100) operable to generate signals representing components of acceleration sensed by the accelerometer (110) sensors, and to electronically process at least some part of the signals to produce an estimation of attitude of a user motion with respect to the accelerometer, and further to combine the attitude estimation (750, α) with a device heading estimation (770, ψ) responsive to the device-heading sensor circuit, to produce a user heading estimation (780); and an electronic display (190) responsive to the electronic circuit (100) to display information at least in part based on the user heading estimation. Other systems, circuits and processes are also disclosed.
Abstract:
A user-heading determining system (10) for pedestrian use includes a multiple-axis accelerometer (110) having acceleration sensors; a device-heading sensor circuit (115) physically situated in a fixed relationship to the accelerometer (110); an electronic circuit (100) operable to generate signals representing components of acceleration sensed by the accelerometer (110) sensors, and to electronically process at least some part of the signals to produce an estimation of attitude of a user motion with respect to the accelerometer, and further to combine the attitude estimation (750, α) with a device heading estimation (770, Ψ) responsive to the device-heading sensor circuit, to produce a user heading estimation (780); and an electronic display (190) responsive to the electronic circuit (100) to display information at least in part based on the user heading estimation. Other systems, circuits and processes are also disclosed.
Abstract:
A user-heading determining system (10) for pedestrian use includes a multiple-axis accelerometer (110) having acceleration sensors; a device-heading sensor circuit (115) physically situated in a fixed relationship to the accelerometer (110); an electronic circuit (100) operable to generate signals representing components of acceleration sensed by the accelerometer (110) sensors, and to electronically process at least some part of the signals to produce an estimation of attitude of a user motion with respect to the accelerometer, and further to combine the attitude estimation (750, α) with a device heading estimation (770, ψ) responsive to the device-heading sensor circuit, to produce a user heading estimation (780); and an electronic display (190) responsive to the electronic circuit (100) to display information at least in part based on the user heading estimation. Other systems, circuits and processes are also disclosed.