Abstract:
A method is provided for determining the position of a satellite navigation system receiver in which use is made of a probabilistic weighting of the signals received, the weighting using a coefficient Ki, for each satellite of index i, the coefficient Ki being a product of factors each comprising a probability of existence of a disturbance, the coefficient Ki, for each satellite of index i, comprising at least one factor of the form (1−Pji)ai.
Abstract:
A method for calibrating a multichannel GNSS receiver which does not require the use of a specific signal generator and which may be implemented directly on the basis of simple measurements taken from a receiver in operation comprises determining a first, broadband equalization filter which may be positioned at the output of the RF reception channels and at the input of the correlators in order to correct the mismatch between the various RF reception channels. The invention also consists of determining a second, narrowband equalization filter in order to correct residual phase and gain errors.
Abstract:
An iterative method for detecting is provided, with at least one receiver satellite in orbit, a target possessing reflective properties that are different from those of the area in which the target is found, by GNSS reflectometry, wherein the reflected GNSS signals are received by an active antenna of the receiver satellite comprising a plurality of antenna elements, the method comprising a step of determining assumed positions of the target, for which positions it is desired to detect the target, and, forming beams and tracking GNSS signals in accordance with these assumptions.
Abstract:
A method is provided for estimating the parameters of useful signal and multi-path signals originating from a radiolocation signal emitted by a satellite, a location device comprising at least two sensors able to receive the signal. The method comprises the steps of: correlating the signal received by the sensors with a local code by means of correlators, constructing, for each sensor, a sampled intercorrelation function intercorrelating the signal received with the local code, determining a spatio-temporal intercorrelation function on the basis of the concatenation of the intercorrelation functions obtained in the previous step for each sensor, estimating parameters representative of the useful signal and of the multi-path signals by applying a maximum likelihood algorithm, the representative parameters including at least one complex amplitude estimated independently for each sensor.