Abstract:
A deformable mirror comprises a deformable membrane extending at rest in a first plane and having a reflecting front face and a back face opposite the front face, a supporting structure, an actuator having a first and second end, the first end fixed to the supporting structure, the second end displaced relative to the first end on a first axis substantially at right angles to the first plane to exert, on the back face, an axial load on the first axis, to locally deform the deformable membrane. The mirror comprises a plate that is substantially flat in a second plane substantially parallel to the first plane, positioned between the actuator and deformable membrane, linked to the back face and deformed when the actuator exerts the axial load, and the plate is rigid in the second plane to take up loads applied to the mirror in the second plane.
Abstract:
The general field provided is that of telescopes comprising an optical system and wavefront-analyzing placed in the focal plane of the optical system. The optical system comprises focusing optics and magnifying optics, the magnifying optics comprising a deformable mirror, the deformation of which is controllable. The telescope comprises monitoring the deformable mirror, comprising a source placed so that the image of the source, after reflection from the deformable mirror, is focused on the wavefront-analyzing. The monitoring comprises a movable mirror having two positions, a rest position and a monitoring position. The source may either be placed in the intermediate focal plane of the focusing optics, or at the focal point of a monitoring mirror, or even in the vicinity of the focal plane of the optical system.
Abstract:
An optical monitoring device for an optical imaging system having a focal plane, an optical axis and an entry pupil, forming an image of a scene substantially at infinity on an image detector disposed substantially in the focal plane, comprises: a virtually point-like emission source at the periphery of the detector and substantially in the focal plane; a reflecting element with a plane surface upstream of the imaging system relative to the direction of light rays coming from the scene, and according to a position and inclination where a monitoring image of the source produced by the optical system and reflected by the reflecting element is substantially in the focal plane on a detection element connected to a monitoring image analyzer allowing potential optical defects to be identified; the reflecting element having an annular shape allowing passage of light rays coming from the scene and passing through the entry pupil.