Abstract:
A method and a function for checking the integrity of the processing of a radionavigation signal emitted by a satellite, the signal being received by a receiver comprising reception means and processing means, the processing means comprising a linear anti-interference filter, the integrity checking method comprising at least a first phase of detection of a risk of false lock-on comprising the following steps: a step of recovery of a nominal theoretical self-correlation function of the received signal not processed by the linear anti-interference filter; a step of determination of a mean theoretical self-correlation function of the signal received and processed by the linear anti-interference filter over a defined integration period; a step of determination of the number of local maxima of the modulus or of the modulus squared of the mean theoretical self-correlation function, a risk of false lock-on being detected if the number of local maxima is greater than or equal to two.
Abstract:
The invention relates to a disruption detection method and device for a positioning measurement correction message of a satellite geolocation device, able to receive a composite radio signal including a plurality of signals each emitted by a satellite in view of the geolocation device, and a positioning measurement differential correction message (MC) emitted by a satellite geolocation precision augmentation system. The device (20) according to the invention includes modules (32) computing, for each of the satellites in view, at least one differential correction coherence metric depending on a positioning measurement differential correction (CAS) extracted from the received differential correction message (MC). The device (20) also includes a module (34) detecting a disruption of the correction message when the number of satellites for which the differential correction coherence metric is above a predetermined threshold exceeds a predetermined number of satellites (NO), strictly greater than one.