Abstract:
An attitude sensor system with automatic bias correction having a primary attitude sensor wherein the primary attitude sensor comprises at least one accelerometer and an auxiliary sensor system configured to automatically estimate a bias of the accelerometer of the primary attitude sensor such that the resulting error is removed from an output of the attitude sensor system.
Abstract:
A strapdown heading sensor includes an elongated housing and a compass module at least partially positioned within an inner cavity of the elongated housing. The compass module is cantilevered within the inner cavity of the elongated housing.
Abstract:
A strapdown heading sensor includes an elongated housing and a compass module at least partially positioned within an inner cavity of the elongated housing. The compass module is cantilevered within the inner cavity of the elongated housing.
Abstract:
Methods of calibrating strapdown heading sensors and strapdown heading sensors are provided. The methods include compensating raw sensor data generated by sensors of an uncalibrated strapdown heading sensor to compensate for errors in an instrument frame of the strapdown heading sensor. The strapdown heading sensor is put in a target apparatus and output data is compensated to compensate for errors in an apparatus frame relative to the instrument frame. The strapdown heading sensors include a housing and a compass module having a first sensor configured to detect a magnetic field of the Earth and a second sensor configured to detect a gravitational force of the Earth. The first sensor and the second sensor are each passively isolated from bending and/or flexing of the housing such that an alignment between the first sensor and the second sensor is not disturbed due to the bending and/or flexing.
Abstract:
An attitude sensor system with automatic bias correction having a primary attitude sensor wherein the primary attitude sensor comprises at least one accelerometer and an auxiliary sensor system configured to automatically estimate a bias of the accelerometer of the primary attitude sensor such that the resulting error is removed from an output of the attitude sensor system.
Abstract:
Methods of calibrating strapdown heading sensors and strapdown heading sensors are provided. The methods include compensating raw sensor data generated by sensors of an uncalibrated strapdown heading sensor to compensate for errors in an instrument frame of the strapdown heading sensor. The strapdown heading sensor is put in a target apparatus and output data is compensated to compensate for errors in an apparatus frame relative to the instrument frame. The strapdown heading sensors include a housing and a compass module having a first sensor configured to detect a magnetic field of the Earth and a second sensor configured to detect a gravitational force of the Earth. The first sensor and the second sensor are each passively isolated from bending and/or flexing of the housing such that an alignment between the first sensor and the second sensor is not disturbed due to the bending and/or flexing.
Abstract:
A torque sensing device includes a rotating component configured to rotate about an axis of rotation and a first sensor positioned adjacent to the rotating component to sense instantaneous angular position of the rotating component at a first location. A second sensor is positioned adjacent to the rotating component radially inboard of the first sensor to sense instantaneous angular position of the rotating component at a second location. A controller is operably coupled to the first sensor and the second sensor. The controller determines a relative phase shift between a first signal generated by the first sensor and a second signal generated by the second sensor to calculate an output proportional to a torque applied to the rotating component.
Abstract:
Methods of calibrating strapdown heading sensors and strapdown heading sensors are provided. The methods include compensating raw sensor data generated by sensors of an uncalibrated strapdown heading sensor to compensate for errors in an instrument frame of the strapdown heading sensor. The strapdown heading sensor is put in a target apparatus and output data is compensated to compensate for errors in an apparatus frame relative to the instrument frame. The strapdown heading sensors include a housing and a compass module having a first sensor configured to detect a magnetic field of the Earth and a second sensor configured to detect a gravitational force of the Earth. The first sensor and the second sensor are each passively isolated from bending and/or flexing of the housing such that an alignment between the first sensor and the second sensor is not disturbed due to the bending and/or flexing.
Abstract:
An attitude sensor system with automatic bias correction having a primary attitude sensor wherein the primary attitude sensor comprises at least one accelerometer and an auxiliary sensor system configured to automatically estimate a bias of the accelerometer of the primary attitude sensor such that the resulting error is removed from an output of the attitude sensor system.
Abstract:
A torque sensing device includes a rotating component configured to rotate about an axis of rotation and a first sensor positioned adjacent to the rotating component to sense instantaneous angular position of the rotating component at a first location. A second sensor is positioned adjacent to the rotating component radially inboard of the first sensor to sense instantaneous angular position of the rotating component at a second location. A controller is operably coupled to the first sensor and the second sensor. The controller determines a relative phase shift between a first signal generated by the first sensor and a second signal generated by the second sensor to calculate an output proportional to a torque applied to the rotating component.