Abstract:
A touch panel-based switch includes a control circuit layer, a sensing layer, a dielectric layer, and a touch operation layer, stacked in the order. The sensing layer electrically connected to the control circuit layer includes plural sensing cell, and the dielectric layer is flexible. The touch operation layer is flexible as well and includes a button area and an adjacent non-button area. The button area includes a ground plane stacked on the dielectric layer and a first touch cover stacked on the ground plane, and the non-button area includes a second touch cover stacked on the dielectric layer. Plural though openings are provided in the button area corresponding to the sensing cells such that a portion of the dielectric layer is exposed.
Abstract:
A capacitive touch keyboard includes a soft shielding layer, a soft intermediate layer, and a one dimensional sensor layer where the soft intermediate layer is interposed between the other two to form a capacitor structure. The soft shielding layer includes a ground plane, a dielectric material covering on the ground plane, and plural key areas at its outer surface. The one dimensional sensor layer includes plural sensing cells which correspond to the key areas, and respective cells are electrically connected to a capacitance sensing circuit. Therefore, features of more compact size, simplified structure design, and tactile feel are provided in a capacitive keyboard.
Abstract:
A touch sensitive device includes a capacitive touch panel with plural electrodes, a driving and sensing circuit electrically connected to the electrodes through sensing lines, and at least one conductive member. The conductive member is arranged orthogonal to and crosses the sensing lines without contact and is electrically connected to the driving and sensing circuit. Therefore, a stable coupling capacitance is provided for a one dimensional capacitive touch panel for improved touch sense performance.
Abstract:
A capacitive touch keyboard includes a soft shielding layer, a soft intermediate layer, and a one dimensional sensor layer where the soft intermediate layer is interposed between the other two to form a capacitor structure. The soft shielding layer includes a ground plane, a dielectric material covering on the ground plane, and plural key areas at its outer surface. The one dimensional sensor layer includes plural sensing cells which correspond to the key areas, and respective cells are electrically connected to a capacitance sensing circuit. Therefore, features of more compact size, simplified structure design, and tactile feel are provided in a capacitive keyboard.
Abstract:
A capacitive touch keyboard includes a shielding layer, a intermediate layer, and a one-dimensional sensor layer where the soft intermediate layer is interposed between the other two to form a capacitor structure. The shielding layer includes a ground plane, and plural first key areas at its outer surface. The one-dimensional sensor layer includes plural sensing cells and plural second key areas where the first key areas correspond to the second key areas, and respective cells are electrically connected to a sensing circuit. Therefore, features of more compact size, simplified structure design, and tactile feel are provided in a capacitive keyboard.
Abstract:
A capacitive touch keyboard includes a sensor layer, ground plane, a flexible sensed body, and a sensing circuit. The sensor layer includes a substrate and a key sensing cell which disposed on the substrate spaced apart from the ground plane. The flexible sensed body includes a sensed portion and a connected portion connected with the ground plane where the sensed portion obliquely extends to above the key sensing cell such that the flexible sensed body and the key sensing cell jointly form a capacitor structure. The sensing circuit is electrically connected to the sensing cell for probing a capacitance change. Therefore, features of more simplified structure design, tactile feel, and improved durability are provided in a capacitive keyboard.
Abstract:
The invention discloses a capacitive touch panel, comprising: a comparator receiving a sense signal of a sense path and a reference signal of a reference path at a first input and a second input of the comparator, respectively; a transparent electrode coupled to the sense path and the reference path; a variable transfer capacitance connected to the first input or the second input of the comparator; and a control unit connected to an output of the comparator.