摘要:
A hydrodynamic bearing rotary device which can reduce rotation friction, and recording and reproducing apparatus including the same is provided. In the hydrodynamic bearing rotary device, such as hard disc devices, a rotary shaft having a hub on one end is provided in a bearing of a sleeve so as to be rotatable. Thrust hydrodynamic grooves are provided on the other end surface of the rotary shaft, to form a thrust bearing with the thrust plate. A communication path is provided in the sleeve. The second gap between the hub and the sleeve end surface is used as a flow channel and is connected to the communication path. In this way, the rotation friction torque of the thrust bearing can be made sufficiently small, and internal pressure in bonded portions of the rotary shaft or the bottom plate can be suppressed. Thus, the oil can be prevented from oozing out from a small space of the bonded surfaces. Furthermore, the hydrodynamic bearing can be made thin. These effects can be combined to realize an optimal hydrodynamic bearing rotary device.
摘要:
A hydrodynamic bearing rotary device which can reduce rotation friction, and recording and reproducing apparatus including the same are provided. In the hydrodynamic bearing rotary device such as hard disc devices, a rotary shaft having a hub on one end is provided in a bearing of a sleeve so as to be rotatable. Thrust hydrodynamic grooves are provided on the other end surface of the rotary shaft, to form a thrust bearing with the thrust plate. A communication path is provided in the sleeve. The second gap between the hub and the sleeve end surface is used as a flow channel and is connected to the communication path. In this way, the rotation friction torque of the thrust bearing can be made sufficiently small, and internal pressure in bonded portions of the rotary shaft or the bottom plate can be suppressed. Thus, the oil can be prevented from oozing out from a small space of the bonded surfaces. Furthermore, the hydrodynamic bearing can be made thin. These effects can be combined to realize an optimal hydrodynamic bearing rotary device.
摘要:
A high-accuracy, long-life hydrodynamic bearing that does not cause oil film breakage in bearing clearances and a disc rotation apparatus using the bearing is disclosed. Oil film breakage is avoided as negative pressure is prevented from generating between the shaft and sleeve of the hydrodynamic bearing. Herringbone shaped dynamic pressure generating grooves, located on the thrust bearing section and the radial bearing section of the hydrodynamic bearing, are oil filled and have optimum shapes. The optimum shapes prevent the generation negative pressure and thus prevents the coagulation of air bubbles that can cause oil film breakage. The disc rotation apparatus, that holds a reproduction/recording disc, is concentrically secured to the hydrodynamic bearing and rotated. The disc is put into contact with magnetic or optical heads while rotating in the disc rotation apparatus. Both the hydrodynamic bearing and the disc rotation apparatus experience high reliability.
摘要:
A sleeve 1 is fixed on a base. Radial dynamic-pressure generating grooves 1A and 1B are provided on an inner surface of the sleeve 1. A thrust plate 4 hermetically seals a lower opening end of the sleeve 1. A shaft 2 is inserted inside the sleeve 1, being allowed to revolve. A flange 3 is fixed at the bottom end of the shaft 2, and its lower surface is placed close to an upper surface of the thrust plate 4. Thrust dynamic-pressure generating grooves 3A and 3B are provided on the surfaces of the flange 3. Gaps A–H among the sleeve 1, the shaft 2, the flange 3, and the thrust plate 4 are filled with a lubricant 5. Hollows 1C–1F are provided on the inner surface of the sleeve 1. The gaps A and C over the thrust dynamic-pressure generating grooves 3A and 3B and their vicinities are narrower than the surrounding gaps B and D (A
摘要:
A high-accuracy, long-life hydrodynamic bearing that does not cause oil film breakage in bearing clearances and a disc rotation apparatus using the bearing is disclosed. Oil film breakage is avoided as negative pressure is prevented from generating between the shaft and sleeve of the hydrodynamic bearing. Herringbone shaped dynamic pressure generating grooves, located on the thrust bearing section and the radial bearing section of the hydrodynamic bearing, are oil filled and have optimum shapes. The optimum shapes prevent the generation negative pressure and thus prevents the coagulation of air bubbles that can cause oil film breakage. The disc rotation apparatus, that holds a reproduction/recording disc, is concentrically secured to the hydrodynamic bearing and rotated. The disc is put into contact with magnetic or optical heads while rotating in the disc rotation apparatus. Both the hydrodynamic bearing and the disc rotation apparatus experience high reliability.
摘要:
Radial dynamic pressure grooves are provided in a first region 4A and a second region 4B on the side of a fixed shaft 2. A vent 2D is provided inside the top end 2A of the fixed shaft 2. The vent 2D connects spaces over and under a flange 3 to each other. The flange 3 in an annular shape is fixed at the top end 2A of the fixed shaft 2. Thrust dynamic pressure grooves 3A and 3B are provided on the surfaces of the flange 3. A circulation hole 3C is provided in the flange 3, and connects spaces over and under the flange 3 to each other. A sleeve 4 revolves around the fixed shaft 2. A thrust plate 6 in an annular shape is fixed at the top of the sleeve 4 and opposed to the flange 3. The first region 4A, the second region 4B, the thrust dynamic pressure grooves 3A and 3B, and the circulation hole 3C of the flange 3 are filled with a lubricant 7. At the revolution of the sleeve 4, the lubricant 7 is concentrated in each central part of the first region 4A, the second region 4B, and the thrust dynamic pressure grooves 3A and 3B and their vicinities, then raising the pressure. The sleeve 4 keeps its stable high-speed revolution, avoiding contact with the fixed shaft 2. The lubricant 7 circulates on surfaces of the flange 3 through the circulation hole 3C.
摘要:
A fluid dynamic bearing device including a shaft having an interior pressure regulating hole by which a center portion of a thrust surface confronting a thrust plate and a lubricant pool portion of an inner circumferential surface of a sleeve are communicated with each other. Thus, the device is capable of obtaining stable thrust floating characteristics and preventing leaks of the lubricant as well as exhaustion of the lubricant.
摘要:
An object of the present invention is to provide a hydrodynamic bearing type rotary device which can improve rotation performance, suppress a friction torque, and reduce power consumption of motor, and a recording and reproducing apparatus including the same. A shaft having a flange on one end and a hub on the other end is provided with a bearing of a sleeve so as to be rotatable. The sleeve includes a communication hole. A third gap between the hub and the sleeve end surface is a flow path, and is connected to the communication hole. Provided that a first gap between a thrust plate 4 and the flange 3 is S1, a second gap between the flange 3 and a lower end surface of the sleeve 1 is S2, and a third gap between the upper end surface of the sleeve 1 and the hub 7 is S3, widths of the gaps satisfy the relational expression, S3>(S1+S2).
摘要:
An object of the present invention is to provide a hydrodynamic bearing type rotary device which can improve rotation performance, suppress a friction torque, and reduce power consumption of motor, and a recording and reproducing apparatus including the same. A shaft having a flange on one end and a hub on the other end is provided with a bearing of a sleeve so as to be rotatable. The sleeve includes a communication hole. A third gap between the hub and the sleeve end surface is a flow path, and is connected to the communication hole. Provided that a first gap between a thrust plate 4 and the flange 3 is S1, a second gap between the flange 3 and a lower end surface of the sleeve 1 is S2, and a third gap between the upper end surface of the sleeve 1 and the hub 7 is S3, widths of the gaps satisfy the relational expression, S3>(S1+S2).
摘要:
To prevent a decrease in performance of controlling a snoop tag. A queue is stored with REPLACE target WAY information and an index as an entry associated with a REPLACE request received from a processor, the index stored in the queue is compared with an index of a subsequent READ request, and, as a result of the comparison, a process based on the index-coincident READ request is executed with respect to the snoop tag corresponding to a content of a cache memory of the processor. Further, the REPLACE target WAY information of the READ request is replaced with the WAY information in the index-coincident entry within the queue.