摘要:
A modified lead barium titanate ceramic which has a fundamental composition of (Ba.sub.1-x-y Sb.sub.y Pb.sub.x)TiO.sub.3, where x is not greater than 0.9 and usually not smaller than 0.6 and y is from 0.001 to 0.1, and has a high positive temperature coefficient of resistivity (PTCR) over a range of temperature higher than about 350.degree. C. at the lower boundary, is produced by using a metal salt of an organic acid such as lead titanate salt of oxalic acid as the source of Pb and by adding at least one of BaCO.sub.3, SiO.sub.2, BN and TiO.sub.2 to the raw materials of the above fundamental composition. After thermally decomposing the organic acid metal salt the mixture of the raw materials including the additive(s) is compacted and sintered. By this method the sintering is achieved with good reproducibility and with little dissipation of lead, and the obtained titanate ceramic is good and durable in the PTCR characteristics and hence is useful as the material of a PTC thermistor functioning at medium-to-high temperatures.
摘要:
To produce a modified barium titanate ceramic which is semiconductive and sufficiently high in breakdown voltage and has a low specific resistance at room temperature and a high positive temperature coefficient (PTC) of resistance, the invention provides a powder composition comprising (A) a basic mixture consisting of 45-85 mol % of BaTiO.sub.3 powder, 1-20 mol % of SrTiO.sub.3 powder, 5-20 mol % of CaTiO.sub.3 powder and 1-20 mol % of PbTiO.sub.3 powder, (B) a source of a dopant element such as Nb, Sb, Y, La or Ce to render the ceramic semiconductive, (C) a source of Mn such as MnC.sub.2 O.sub.4 and/or a source of Cu such as CuO added such that the total amount of Mn and Cu is not more than 0.06 mol % on the basis of the quantity of the mixture (A) with proviso that the amount of Mn is not more than 0.025 mol % and (D) SiO.sub.2 amounting to 0.1-2.0 mol % on the basis of the quantity of the mixture (A). The BaTiO.sub.3 powder and the SrTiO.sub.3 powder are produced by calcining BaTiO(C.sub.2 O.sub.4).sub.2 and SrTiO(C.sub.2 O.sub.4).sub.2, respectively, and in each of these powders very fine primary particles agglomerate to constitute porous and coarse secondary particles (about 100-200 .mu.m). The PbTiO.sub.3 powder may be produced by calcining PbTiO(C.sub.2 O.sub.4).sub.2 so as to have nearly the same structure as the BaTiO.sub.3 and SrTiO.sub.3 powders. The aimed ceramic is produced by compacting the powder composition into a green body and sintering it at 1300.degree.-1400.degree. C.