摘要:
Methods for density logging utilizes gamma-rays above a pair-production threshold so as to determine lithology information of formations whereby to correct a measured density data.
摘要:
Methods for density logging utilizes gamma-rays above a pair-production threshold so as to determine lithology information of formations whereby to correct a measured density data.
摘要:
Methods and related systems are described for use for making subterranean nuclear measurements. The system can include a plurality of elongated scintillator members each generating optical signals in response to ionizing radiation. Optical detector units can be optically coupled to at least one end of each elongated scintillator member so as to detect optical signals from each elongated scintillator member. The system can be suitable for permanent or semi-permanent deployment downhole. For example, the system can operate for more than six months in a subterranean deployment measuring cosmic radiation. The system can be suited to monitor density changes in subterranean regions of interest, for example, density changes brought about by steam injection as part of a steam assisted gravity drainage operation.
摘要:
Borehole tools and methods for analyzing earth formations are disclosed herein. An example borehole tool disclosed herein includes an RF particle accelerator. The particle accelerator includes an accelerator waveguide for accelerating electrons. The borehole tool also includes a power amplification circuit that is based on a wide bandgap semiconductor material, such as a combination of gallium nitride (GaN) and aluminum gallium nitride (AlGaN). The power amplification circuit amplifies an initial input RF signal and provides a driving RF output signal to drive acceleration of the electrons within the accelerator waveguide.
摘要:
A particle accelerator device structured and arranged for use in a subterranean environment. The particle accelerator device comprising: one or more resonant Photonic Band Gap (PBG) cavity, the one or more resonant PBG cavity is capable of providing localized, resonant electro-magnetic (EM) fields so as to one of accelerate, focus or steer particle beams of one of a plurality of electrons or a plurality of ions. Further, the particle accelerator device may provide for the one or more resonant PBG cavity to include a geometry and one or more material that is optimized in terms of RF power losses, wherein the optimization provides for a PBG cavity quality factor significantly higher than that of an equivalent normally conducting pill-box cavity.
摘要:
Methods and related systems are described for use for making subterranean nuclear measurements. The system can include a plurality of elongated scintillator members each generating optical signals in response to ionizing radiation. Optical detector units can be optically coupled to at least one end of each elongated scintillator member so as to detect optical signals from each elongated scintillator member. The system can be suitable for permanent or semi-permanent deployment downhole. For example, the system can operate for more than six months in a subterranean deployment measuring cosmic radiation. The system can be suited to monitor density changes in subterranean regions of interest, for example, density changes brought about by steam injection as part of a steam assisted gravity drainage operation.