摘要:
A display device with a higher contrast ratio is provided. The display device is provided with stacked polarizing plates arranged displaced from a parallel nicol state. Moreover, in the display device, at least one of a pair of stacked polarizing plates is displaced from a parallel state. The pair of stacked polarizing plates is arranged in a cross nicol state. A retardation plate may be provided between the polarizing plate and the substrate. As a result, the contrast ratio can be increased.
摘要:
An object of the present invention is to provide a display device having a high contrast ratio by a simple and easy method. Another object of the present invention is to manufacture such a display device having a high contrast ratio at low cost. The present invention relates to a display device including a first substrate; a second substrate; a layer including a display element, wherein the layer including the display element is interposed between the first substrate and the second substrate; and stacked polarizers on the outer side of the first substrate or the second substrate. The stacked polarizers are arranged to be in a parallel Nicols state and the wavelength distributions of the extinction coefficients of the stacked polarizers are different from each other.
摘要:
To provide a display device having a high contrast ratio by a simple and easy method and to manufacture a high-performance display device at low cost, in a display device having a display element between a pair of light-transmitting substrates, layers each including a polarizer having different wavelength distribution of extinction coefficient from each other with respect to the absorption axes are stacked and provided on an outer side of the light-transmitting substrates. Further, a retardation plate may be provided between the stacked polarizers.
摘要:
The invention provides a display device of which a contrast ratio is enhanced. By providing stacked polarizing plates so as to be in a cross nicol state, a contrast ratio of a display device can be enhanced. The stacked polarizing plates are stacked outside a light-transmissive insulating substrate in a parallel nicol state. When the number of polarizing plates is four or five in total, a contrast ratio becomes the highest.
摘要:
An object is to provide a display device with high contrast ratio. Another object is to manufacture such a high-performance display device at low cost. In a display device having a display element interposed between a pair of light-transmitting substrates, a stack of polarizer-including layers in a parallel nicol state is provided outside each of the light-transmitting substrates. Here, transmission axes of polarizers that are stacked in the stack on one side of the display element and transmission axes of polarizers that are stacked in the stack on another side of the display element are arranged to be displaced from a cross nicol state. Also, a retardation film may be provided between the polarizers that are stacked and the substrate.
摘要:
To provide a display device having a high contrast ratio by a simple and easy method and to manufacture a high-performance display device at low cost, in a display device having a display element between a pair of light-transmitting substrates, layers each including a polarizer having different wavelength distribution of extinction coefficient from each other with respect to the absorption axes are stacked and provided on an outer side of the light-transmitting substrates. Further, a retardation plate may be provided between the stacked polarizers.
摘要:
It is an object to provide a display device having an electroluminescent element in which a contrast ratio is increased. In a display device having an electroluminescent element between a pair of light transmitting substrates, a circularly polarizing plate having stacked polarizing plates arranged on outer sides thereof is provided. At this time, opposed polarizing plates are arranged to be in a crossed nicol state or in a parallel nicol state. As a result, a display device with a high contrast ratio can be provided.
摘要:
An object of the invention is to provide a display device having a high contrast ratio. Another object of the invention is to manufacture such a high-performance display device at low cost. In a display device having a display element between a pair of light-transmissive substrates, polarizer-including layers, which have different wavelength distributions of extinction coefficients, are stacked so that absorption axes are in a parallel nicol state, over each light-transmissive substrate. Absorption axes of one of a pair of stacks of polarizers and the other together which interpose the display element are deviated from a cross nicol state. A retardation plate may be provided between the stack of polarizing plates and the substrate.
摘要:
An object of the invention is to provide a display device having a high contrast ratio. Another object of the invention is to manufacture such a high-performance display device at low cost. In a display device having a display element between a pair of light-transmissive substrates, polarizer-including layers, which have different wavelength distributions of extinction coefficients, are stacked so that absorption axes are in a parallel nicol state, over each light-transmissive substrate. Absorption axes of one of a pair of stacks of polarizers and the other together which interpose the display element are deviated from a cross nicol state. A retardation plate may be provided between the stack of polarizing plates and the substrate.
摘要:
An object of the present invention is to provide a display device having a high contrast ratio by a simple and easy method. Another object of the present invention is to manufacture such a display device having a high contrast ratio at low cost. The present invention relates to a display device including a first substrate; a second substrate; a layer including a display element, wherein the layer including the display element is interposed between the first substrate and the second substrate; and stacked polarizers on the outer side of the first substrate or the second substrate. The stacked polarizers are arranged to be in a parallel Nicols state and the wavelength distributions of the extinction coefficients of the stacked polarizers are different from each other.