SEPARATED LIFT-THRUST VTOL AIRCRAFT WITH ARTICULATED ROTORS

    公开(公告)号:US20210107640A1

    公开(公告)日:2021-04-15

    申请号:US16993516

    申请日:2020-08-14

    Abstract: A separated lift-thrust (SLT) aircraft includes a longitudinal-thrust engine and articulated electric rotors, at least some of which are variable-position rotors having variable orientations based on rotor position signals. Control circuitry independently controls thrust of the longitudinal-thrust engine and the thrust and orientation of each of the variable-position rotors, relative to the aircraft lifting surface and longitudinal thrust engine, to provide for commanded thrust-vectoring maneuvering of the aircraft during VTOL, fixed wing flight, and intermediate transitional states, including maintenance of a desired pose of the lifting surface independent of orientation of the rotor orientations when hovering the aircraft in windy conditions. A flight and navigation control system automates flight maneuvers and maintains desired aircraft pose and position relative to static or dynamic coordinates during station keeping, tracking, avoidance, or convergence maneuvers.

    Separated lift-thrust VTOL aircraft with articulated rotors

    公开(公告)号:US11919630B2

    公开(公告)日:2024-03-05

    申请号:US16993516

    申请日:2020-08-14

    CPC classification number: B64C29/0033

    Abstract: A separated lift-thrust (SLT) aircraft includes a longitudinal-thrust engine and articulated electric rotors, at least some of which are variable-position rotors having variable orientations based on rotor position signals. Control circuitry independently controls thrust of the longitudinal-thrust engine and the thrust and orientation of each of the variable-position rotors, relative to the aircraft lifting surface and longitudinal thrust engine, to provide for commanded thrust-vectoring maneuvering of the aircraft during VTOL, fixed wing flight, and intermediate transitional states, including maintenance of a desired pose of the lifting surface independent of orientation of the rotor orientations when hovering the aircraft in windy conditions. A flight and navigation control system automates flight maneuvers and maintains desired aircraft pose and position relative to static or dynamic coordinates during station keeping, tracking, avoidance, or convergence maneuvers.

Patent Agency Ranking