Abstract:
A textile includes: (1) a matrix; and (2) particulate fillers dispersed within the matrix. The textile has a transmittance of infrared radiation at a wavelength of 9.5 μm of at least about 40%, and the textile has a weighted average reflectivity of radiation over a wavelength range of 0.3 μm to 2 μm of at least about 40%.
Abstract:
An apparatus for combined digital and optical processing of a cryptocurrency data block includes a digital processor that computes a hash vector from the cryptocurrency data block; a laser and splitter that produces optical input signals; optical modulators that binary phase-shift key modulate the optical input signals based on the hash vector; a photonic matrix multiplier circuit that performs an optically perform a discrete matrix-vector product operation on the modulated optical input signals to produce optical output signals, where the discrete matrix-vector product operation is defined by matrix elements limited to K discrete values, where 2≤K≤17; and photodetectors and comparators that perform optoelectronic conversions of the optical output signals to produce corresponding digital electronic output signals. The digital processor performs a second hash computation on an XOR result between the digital electronic output signals and the hash vector to produce a proof of work result.
Abstract:
The present disclosure provides meta-optical elements and image sensors using a meta-pattern and apparatuses including the image sensors. In an embodiment, an image sensor includes a plurality of pixels. Each pixel of the plurality of pixels includes a photoelectric conversion layer including at least one photoelectric conversion element, and a color routing meta-structure layer provided at a position facing the photoelectric conversion layer. The color routing meta-structure layer includes a meta-structure having a symmetrical structure with respect to a center of a corresponding pixel, and a multi-layer structure having a refractive index that varies in a direction perpendicular to a light-incident surface.
Abstract:
Systems and methods for activation in an optical circuit in accordance with embodiments of the invention are illustrated. One embodiment includes an optical activation circuit, wherein the circuit comprises a directional coupler, an optical-to-electrical conversion circuit, a time delay element, a nonlinear signal conditioner, and a phase shifter. The directional coupler receives an optical input and provides a first portion to the optical-to-electrical conversion circuit and a second portion to the time delay element, the time delay element provides a delayed signal to the phase shifter, and the optical-to-electrical conversion circuit converts an optical signal from the directional coupler to an electrical signal used to activate the phase shifter to shift the phase of the delayed signal.
Abstract:
Systems and methods for training photonic neural networks in accordance with embodiments of the invention are illustrated. One embodiment includes a method for training a set of one or more optical interference units (OIUs) of a photonic artificial neural network (ANN), wherein the method includes calculating a loss for an original input to the photonic ANN, computing an adjoint input based on the calculated loss, measuring intensities for a set of one or more phase shifters in the set of OIUs when the computed adjoint input and the original input are interfered with each other within the set of OIUs, computing a gradient from the measured intensities, and tuning phase shifters of the OIU based on the computed gradient.
Abstract:
A radiative cooler is provided having a thermally insulated vacuum chamber housing that is configured to support a vacuum level of at least 10−5 Torr, an infared-transparent window that is sealably disposed on top of the thermally insulated vacuum chamber and is transparet in the range of 8-13 μm, a selective emitter disposed inside the chamber, a mirror cone on the infared-transparent window, a selective emitter inside the chamber and is configured to passively dissipate heat from the earth into outer space through the infared-transparent window and is thermally decoupled from ambient air and solar irradiation but coupled to outer space, a heat exchanger with inlet and outlet pipes disposed below the selective emitter to cool water flowing through the pipe, a sun shade disposed vertically outside the chamber to minimize direct solar irradiation, and a mirror cone to minimize downward atmospheric radiation.
Abstract:
An isotropic imaging filter is provided that includes a photonic crystal slab, where the photonic crystal slab includes a square lattice of air through holes, a dielectric constant, a thickness (d), a through hole radius (r), and a lattice constant (a), where the square lattice of air holes are separated according to a value of the lattice constant, where the thickness is configured according to d=M(a), where the through hole radii is configured according to r=N(a), where the thickness and the hole radii are configured to generate isotropic bands of guided resonances of an incident image.
Abstract:
A method of regulating a temperature of a human body includes: (1) providing an article of clothing including a textile, wherein the textile includes at least one porous layer including a polyolefin; and (2) placing the article of clothing adjacent to the human body. The porous layer has pores having an average pore size in a range of 50 nm and 1000 nm.
Abstract:
Various embodiments are directed to apparatuses and methods related to source circuitry that provide power to other circuitry. The source circuitry including gain circuitry and a source resonator. The gain circuitry provide powers to the source resonator with a gain that is dependent on a coupling rate between the source circuitry and other circuitry. The source resonator is coupled to the gain circuitry and generates a magnetic field in response to the power. The source circuitry is configured and arranged to wirelessly transfer the power to the other circuitry via the magnetic field.
Abstract:
An optical device and a method of using an optical filter are provided. The optical device includes an optical filter and a narrowband optical source. The optical filter has a refractive index that varies along a length of the optical filter. The narrowband optical source is in optical communication with the optical filter and is configured to generate light having a wavelength at or in the vicinity of at least one of a wavelength corresponding to a local transmission maximum and a wavelength corresponding to a maximum slop of the group index spectrum of the optical filter.