Abstract:
A method is disclosed for the reduction of image artifacts, in particular metal artifacts, during the generation of computed tomography image data of an object. In at least one embodiment of the method, two CT image data sets are generated with different medium x-ray energies. By way of a weighted combination of the two CT image data sets, a new image data set is calculated. The weighting factor employed in the weighted combination is here selected in such a way that the image artifacts in the new CT image data set are significantly reduced compared with the image artifacts in the two original CT image data sets. In this way it is possible in a simple manner significantly to reduce in particular metal artifacts in CT images.
Abstract:
A method and a correspondingly configured tomography scanner are disclosed for normalizing image data with respect to a contrast in the image data produced by a contrast agent, the image data illustrating a tissue structure to be examined and at least part of a blood vessel system of an examination region connected to the tissue structure, which are at least in part permeated by the contrast agent. In an embodiment of the method, image data of the examination region is provided with the aid of the tomography scanner. At least one section of a reference vessel permeated by contrast agent is selected in the image data. The image data is normalized on the basis of image data from the section of the reference vessel such that the contrast in the image data as a result of the contrast agent is almost independent of patient-specific and examination-specific parameters in order to ensure that image data from different times can be compared.
Abstract:
A method and a correspondingly configured tomography scanner are disclosed for normalizing image data with respect to a contrast in the image data produced by a contrast agent, the image data illustrating a tissue structure to be examined and at least part of a blood vessel system of an examination region connected to the tissue structure, which are at least in part permeated by the contrast agent. In an embodiment of the method, image data of the examination region is provided with the aid of the tomography scanner. At least one section of a reference vessel permeated by contrast agent is selected in the image data. The image data is normalized on the basis of image data from the section of the reference vessel such that the contrast in the image data as a result of the contrast agent is almost independent of patient-specific and examination-specific parameters in order to ensure that image data from different times can be compared.
Abstract:
A method is disclosed for processing an output image of an examination object, with the output image having been reconstructed from measuring data acquired during a relative rotational movement between a radiation source of a computed tomography system and the examination object. An image frequency division of an output image takes place in at least a first and a second image. In at least one embodiment, the first image is changed by way of a first function, with the first function effecting a contrast intensification within the first image, and the changed first image and the second image are merged together.
Abstract:
A method is disclosed for processing an output image of an examination object, with the output image having been reconstructed from measuring data acquired during a relative rotational movement between a radiation source of a computed tomography system and the examination object. An image frequency division of an output image takes place in at least a first and a second image. In at least one embodiment, the first image is changed by way of a first function, with the first function effecting a contrast intensification within the first image, and the changed first image and the second image are merged together.
Abstract:
In a method and control device to control a slice image acquisition system, a scan protocol is initially selected from a number of scan protocols, and then an automatic control of the slice image acquisition system (13) ensues on the basis of the selected scan protocol by automatic receipt of previous information regarding the examination subject, automatic synchronization of the previous information with information regarding scan protocol-specific parameters of scan protocols, and automatic selection of the scan protocol, from among the number of scan protocols, that has parameters exhibiting the greatest compatibility with the received previous information according to an established rule.
Abstract:
In a method and control device to control a slice image acquisition system, a scan protocol is initially selected from a number of scan protocols, and then an automatic control of the slice image acquisition system (13) ensues on the basis of the selected scan protocol by automatic receipt of previous information regarding the examination subject, automatic synchronization of the previous information with information regarding scan protocol-specific parameters of scan protocols, and automatic selection of the scan protocol, from among the number of scan protocols, that has parameters exhibiting the greatest compatibility with the received previous information according to an established rule.
Abstract:
At least one example embodiment relates to a method and/or a device for automatically differentiating types of kidney stones using computed tomography. The method provides two image data records of two computed tomography pictures of an object area including the kidney stones that have been recorded in the context of a different spectral distribution of the X-radiation. For each voxel of a slice of the object area that has X-ray attenuation values typical of kidney stones there is calculated from the two image data records a ratio r that is yielded from X-ray attenuation values of the voxel and prescribed X-ray attenuation values of pure urine in the context of the different spectral distributions of the X-radiation. The respective voxel is assigned to one of at least two types of kidney stones as a function of the variable r.
Abstract:
A method and an image evaluation unit are disclosed for recognizing and marking contrast agents in blood vessels of the lung with the aid of a CT examination using at least two different x-ray energy spectra. In at least one embodiment, the method includes scanning a patient at least in the region of the lung with two different x-ray energy spectra, with the patient having contrast agents in the blood stream; reconstructing an at least two or three dimensional tomographic display for each x-ray energy spectrum which reproduces the local spectrum-specific absorption properties of the scanned region, wherein a neighborhood is defined for a multiplicity of voxels for which an average ratio is calculated with the aid of the local absorption values of the at least two x-ray energy spectra, which neighborhood specifies a measure for the ratio of the proportion of contrast agent to the proportion of soft tissue in the neighborhood of the respectively considered voxel, and wherein, in the case of this ratio dropping below a threshold value, this voxel is considered to have reduced circulation and is marked in a tomographic display.
Abstract:
At least one embodiment of the present application relates to a method and/or a device for automatically differentiating types of kidney stones by way of computed tomography. In at least one embodiment, the method provides two image data records of two computed tomography pictures of an object area including the kidney stones that have been recorded in the context of a different spectral distribution of the X-radiation. For each voxel of an interesting slice of the object area that has X-ray attenuation values typical of kidney stones there is calculated from the two image data records a ratio r that is yielded from X-ray attenuation values of the voxel and prescribed X-ray attenuation values of pure urine in the context of the different spectral distributions of the X-radiation. The respective voxel is assigned to one of at least two types of kidney stones as a function of the variable r. The present method enables the automatic differentiation of types of kidney stones by way of computed tomography.