摘要:
First stage stator vanes for a turbine comprised airfoil profile substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I, which define a plurality of radially spaced profile sections forming the nominal profile. The Z coordinate values for each profile section are radial distances from the turbine axis to a portion of the surface of revolution about the axis containing the profile section. The X and Y values for each profile section are coordinate values which, when connected by smooth continuing arcs define the airfoil profile section along the surface of revolution portion. The radially spaced profile sections are joined smoothly with one another to form the nominal airfoil profile.
摘要:
A turbine nozzle includes, in an exemplary embodiment, an outer band portion, an inner band portion at least one nozzle vane extending between the inner band portion and the outer band portion, and at least one cooling channel extending axially at least partially through at least one of the outer band portion and the inner band portion. The at least one nozzle vane, the inner band portion, and the outer band portion define a flowpath for flowing hot gases of combustion. Each cooling channel includes at least one inlet with each inlet isolated from the flowing hot gases of combustion.
摘要:
A turbine bucket includes a bucket airfoil having a tip shroud with a leading edge comprising two scalloped faces and a trailing edge comprising a third scalloped face defining leading and trailing edge profiles substantially in accordance with Cartesian coordinate values of X and Y as points 1-41 set forth in Table I. The X and Y values are distances in inches which, when respective points are connected by smooth, continuing arcs define the leading and trailing edge tip shroud scalloped profiles. The tip shroud further has first and second, upper and lower, Z form edge profiles substantially in accordance with Cartesian coordinate values of X and Y as points 42-59 and 60-77, respectively of Table II.
摘要:
Third stage turbine buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z′ set forth Table I wherein X and Y values are in inches and the Z′ values are non-dimensional values from 0 to 1 convertible to Z distances in inches by multiplying the Z′ values by the height of the airfoil in inches. The X and Y values are distances which, when connected by smooth continuing arcs, define airfoil profile sections at each distance Z. The profile sections at each distance Z are joined smoothly to one another to form a complete airfoil shape. The X, Y and Z distances may be scalable as a function of the same constant or number to provide a scaled up or scaled down airfoil section for the bucket. The nominal airfoil given by the X, Y and Z distances lies within an envelope of +/−.0.040 inches in directions normal to the surface of the airfoil.
摘要:
Blade load path on a gas turbine disk can be diverted to provide a significant disk fatigue life benefit. A plurality of gas turbine blades are attachable to a gas turbine disk, where each of the gas turbine blades includes a blade dovetail engageable in a correspondingly-shaped dovetail slot in the gas turbine disk. In order to reduce gas turbine disk stress, an optimal material removal area is defined according to blade and/or disk geometry to maximize a balance between stress reduction on the gas turbine disk, a useful life of the gas turbine blade, and maintaining or improving the aeromechanical behavior of the gas turbine blade. Removing material from the material removal area effects the maximized balance.
摘要:
Nozzle segments are secured to a retention ring against circumferential rotation by anti-rotation pins extending generally axially between the outer bands of the nozzle segments and the retention ring. Retention plate segments overlie the ends of the pins, preventing axial removal thereof. To remove a selected nozzle segment, inner diameter retention plate segments and selected retention plate segments are removed, the latter exposing the ends of the pins for axial withdrawal. Upon removal of a predetermined number of pins, the nozzle segments adjacent the selected segment are displaced away from the latter segment to open a gap between the selected segment and adjacent segments whereby the selected segment can be removed in an axial direction.