Abstract:
An acoustic transducer includes a frame, voice coil movable along a pole, magnetic structure generating magnetic flux in a gap where the voice coil moves, diaphragm attached to the coil, waveguide extension in front of the pole, inner flexible roll seal connecting the waveguide extension to neck area of the diaphragm, and outer seal connecting outer periphery of the diaphragm to the frame. The inner flexible roll seal seals the gap between the voice coil and the pole, isolating the air in front of the diaphragm from the air behind the diaphragm. The inner seal provides damping of unwanted resonances of the diaphragm. Together, the inner seal and the outer seal do not substantially decrease the piston area of the transducer, and do not substantially affect the transducer's movement. In combination, the inner seal and the waveguide extension tend to increase efficiency and decrease audio distortions of the transducer.
Abstract:
An audio transducer assembly configured for positioning with respect to a mounting surface, said assembly employing a tweeter in a directionally adjustable body which swivels radially and axially for positioning and directing the tweeter in a desired direction. By keeping the center of rotation at or near the center of the surface of the tweeter, the adjustment of the tweeter does not significantly offset its body in the X or Y direction through its range of motion. Such configuration allows for compensation of the distortion caused by placing the tweeter in the middle of a woofer in a speaker having multiple transducers in a single assembly.
Abstract:
A loudspeaker system includes an enclosure having an open end defining a plane, a baffle, a loudspeaker operating in the 4 kHz to 10 kHz range, and a device, preferably a ribbed portion having a plurality of grooves, coupled to the baffle for modifying the spectral profile of the projected sound waves. The baffle includes first and second angled surfaces each oriented at an oblique angle with respect to the plane. The speaker is coupled to the first angled surface and the ribbed portion is coupled to the baffle along the intersection of the first angled surface and the second angled surface. When mounted in a wall or ceiling, the system projects a sound field substantially indistinguishable from that of a loudspeaker located within the listener's listening plane. The baffle can also have acoustic damping material attached thereto, with grooves formed therein, to prevent reflections of 4 kHz to 10 kHz sound.
Abstract:
An audio transducer assembly configured for positioning with respect to a mounting surface, said assembly employing a tweeter in a directionally adjustable body which swivels radially and axially for positioning and directing the tweeter in a desired direction. By keeping the center of rotation at or near the center of the surface of the tweeter, the adjustment of the tweeter does not significantly offset its body in the X or Y direction through its range of motion. Such configuration allows for compensation of the distortion caused by placing the tweeter in the middle of a woofer in a speaker having multiple transducers in a single assembly.
Abstract:
An improved loudspeaker system includes an asymmetrical array of dissimilar drivers, namely a first driver and a second complementary driver configured in an array and driven in parallel so that the measured on-axis frequency response and the output power (SPL) is improved as compared to a symmetrical array (with similar or matched midrange or mid-bass drivers), while retaining a flat tonal balance. This speaker system and method for voicing was discovered to provide lower distortion, improved frequency response and greater clarity as compared to the prior art or traditional (e.g., MTM) loudspeaker configurations.
Abstract:
A high fidelity, low-profile loudspeaker assembly includes an enclosure having a rear panel which is highly thermally conductive. At least one speaker driver is mounted in the enclosure, the driver including a forwardly facing diaphragm driven by a voice coil former carrying a voice coil, and a rearwardly extending motor structure. An aperture is provided in the rear panel to receiving the driver's motor structure, and a thermally conductive gasket seals the rear panel aperture around cup to provide a thermal path from the driver motor to the rear panel for cooling the driver. On one driver embodiment, a generally dome-shaped annular spider surrounds and supports the voice coil former, the spider being connected at its inner periphery to the approximate vertical midpoint of the voice coil former.
Abstract:
A loudspeaker system includes an enclosure having an open end defining a plane, a baffle, a loudspeaker operating in the 4 kHz to 10 kHz range, and a device, preferably a ribbed portion having a plurality of grooves, coupled to the baffle for modifying the spectral profile of the projected sound waves. The baffle includes first and second angled surfaces each oriented at an oblique angle with respect to the plane. The speaker is coupled to the first angled surface and the ribbed portion is coupled to the baffle along the intersection of the first angled surface and the second angled surface. When mounted in a wall or ceiling, the system projects a sound field substantially indistinguishable from that of a loudspeaker located within the listener's listening plane. The baffle can also have acoustic damping material attached thereto, with grooves formed therein, to prevent reflections of 4 kHz to 10 kHz sound.
Abstract:
An acoustic transducer includes a frame, voice coil movable along a pole, magnetic structure generating magnetic flux in a gap where the voice coil moves, diaphragm attached to the coil, waveguide extension in front of the pole, inner flexible roll seal connecting the waveguide extension to neck area of the diaphragm, and outer seal connecting outer periphery of the diaphragm to the frame. The inner flexible roll seal seals the gap between the voice coil and the pole, isolating the air in front of the diaphragm from the air behind the diaphragm. The inner seal provides damping of unwanted resonances of the diaphragm. Together, the inner seal and the outer seal do not substantially decrease the piston area of the transducer, and do not substantially affect the transducer's movement. In combination, the inner seal and the waveguide extension tend to increase efficiency and decrease audio distortions of the transducer.