Abstract:
A radio communication apparatus includes a first detection unit configured to detect a first signal in a first carrier sense period contained in a pre assigned reception slot, a relaying unit configured to relay the detected first signal, a second detection unit configured to detect a second signal in a second carrier sense period contained in a pre assigned transmission slot, and a stopping unit configured to stop transmission in the transmission slot when the second detection unit detects the second signal.
Abstract:
A terminal station radio communication device belongs to a second radio communication system which shares a frequency channel with a first radio communication system in which a radio terminal station communicates with a radio base station in a predetermined time period using a predetermined frequency channel. The terminal station radio communication device includes: a transmission power determining unit which sets up signal transmission power, the signal transmission power being usable for communications between radio communication devices belonging to the second radio communication system, and being determined such that reception power at the radio base station is below a predetermined threshold; a synchronizer enabling the radio terminal station to obtain timing information to start signal transmission; and a signal transmitter starting transmitting the signal at the timing represented by the timing information and terminating the signal transmission within a predetermined time period.
Abstract:
A radio communication apparatus includes a first detection unit configured to detect a first signal in a first carrier sense period contained in a pre assigned reception slot, a relaying unit configured to relay the detected first signal, a second detection unit configured to detect a second signal in a second carrier sense period contained in a pre assigned transmission slot, and a stopping unit configured to stop transmission in the transmission slot when the second detection unit detects the second signal.
Abstract:
A terminal station radio communication device belongs to a second radio communication system which shares a frequency channel with a first radio communication system in which a radio terminal station communicates with a radio base station in a predetermined time period using a predetermined frequency channel. The terminal station radio communication device includes: a transmission power determining unit which sets up signal transmission power, the signal transmission power being usable for communications between radio communication devices belonging to the second radio communication system, and being determined such that reception power at the radio base station is below a predetermined threshold; a synchronizer enabling the radio terminal station to obtain timing information to start signal transmission; and a signal transmitter starting transmitting the signal at the timing represented by the timing information and terminating the signal transmission within a predetermined time period.
Abstract:
A transfer control device is arranged between a bus and a bus interface. The transfer control device includes a bus connecting unit that is connected to plural signal lines of the bus, an interface connecting unit that is connected to plural signal lines of the bus interface, and a connection control unit that connects, when a defective signal line exists in the plural signal lines of the bus, a signal line corresponding to the defective signal line out of the plural signal lines of the bus interface and a signal line other than the defective signal line out of the plural signal lines of the bus.
Abstract:
A radio communication terminal includes a detection unit configured to detect a plurality of usable frequencies of a frequency range, in which the radio communication terminal plans to transmit, at least depending on whether or not a power of a first received signal is greater than a first threshold, a selection unit configured to select, when a first frequency band from f0+f1 to f0+f1+Δf1 (f1 is a first frequency, and Δf1 is a first bandwidth) and a second frequency band from f0−f1−Δf1 to f0−f1 are simultaneously usable with respect to a center frequency f0 of a utilizing frequency range including the usable frequencies, the first frequency band and the second frequency band as a pair of utilizing frequency bands, and a transmission unit configured to transmit different signals in the pair of utilizing frequency bands.
Abstract:
A radio communication system which includes a base station apparatus and terminal apparatuses and performs TDD two-way communications using an OFDM signal including subcarriers in a downstream communication from the base station apparatus to each terminal apparatus, and an FH signal having the same frequency band as that of the subcarriers in an upstream communication from the each terminal apparatus to the base station apparatus, the each terminal apparatus estimates transmission channel characteristics of the subcarriers based on the OFDM signal received, transmits an estimation result of the estimation unit to the base station apparatus, and the base station apparatus assigns, to the each terminal apparatus, at least one of subcarriers to be used in the downstream communication of the subcarriers and a hopping pattern to be used in the upstream communication, based on the estimation result transmitted from the each terminal apparatus.
Abstract:
a radio communication system which includes a base station apparatus and terminal apparatuses and performs TDD two-way communications using an OFDM signal including subcarriers in a downstream communication from the base station apparatus to each terminal apparatus, and an FH signal having the same frequency band as that of the subcarriers in an upstream communication from the each terminal apparatus to the base station apparatus, the each terminal apparatus estimates transmission channel characteristics of the subcarriers based on the OFDM signal received, transmits an estimation result of the estimation unit to the base station apparatus, and the base station apparatus assigns, to the each terminal apparatus, at least one of subcarriers to be used in the downstream communication of the subcarriers and a hopping pattern to be used in the upstream communication, based on the estimation result transmitted from the each terminal apparatus.
Abstract:
A radio communication terminal includes a detection unit configured to detect a plurality of usable frequencies of a frequency range, in which the radio communication terminal plans to transmit, at least depending on whether or not a power of a first received signal is greater than a first threshold, a selection unit configured to select, when a first frequency band from f0+f1 to f0+f1+Δf1 (f1 is a first frequency, and Δf1 is a first bandwidth) and a second frequency band from f0−f1−Δf1 to f0−f1 are simultaneously usable with respect to a center frequency f0 of a utilizing frequency range including the usable frequencies, the first frequency band and the second frequency band as a pair of utilizing frequency bands, and a transmission unit configured to transmit different signals in the pair of utilizing frequency bands.
Abstract:
The present communication system has a communication terminal (100) and a communication terminal (200) that are respectively provided with a memory for writing and reading using error correction coding/decoding. The communication terminal (100) transmits data to the communication terminal (200) in a high speed mode or normal mode. In high speed mode, the communication terminal (100) reads coded data written in a first memory (112) and transmits the coded data to the communication terminal (200) without decoding. The receiving-side communication terminal (200) writes the received data in a second memory (212) without coding, and decodes the data when said data is read.