Robot control method, robot, and computer-readable storage medium

    公开(公告)号:US12186909B2

    公开(公告)日:2025-01-07

    申请号:US18075450

    申请日:2022-12-06

    Abstract: A robot control method, a robot, and a computer-readable storage medium are provided. The method includes: obtaining a trajectory planning parameter of joint(s) of the robot, force data of an end of the robot, and force data of the joint(s); obtaining an end admittance compensation amount; determining a first joint parameter and a first slack variable corresponding to the end admittance compensation amount in a joint space of each of the joint(s) based on the end admittance compensation amount and the trajectory planning parameter; obtaining a joint admittance compensation amount; determining a second joint parameter based on the first joint parameter, the first slack variable, the joint admittance compensation amount, and the trajectory planning parameter; determining a target joint commanding position based on the second joint parameter; and controlling the robot to move according to the target joint commanding position.

    ROBOT CONTROL METHOD, ROBOT AND COMPUTER-READABLE STORAGE MEDIUM

    公开(公告)号:US20230130977A1

    公开(公告)日:2023-04-27

    申请号:US18089614

    申请日:2022-12-28

    Abstract: A method for controlling a robot comprising an end effector includes: establishing at steady state between the end effector and a working surface through a preset impedance control mechanism, and adjusting a contact force between the end effector and the working surface according to a preset desired force; obtaining a contact torque generated by the contact force; controlling the end effector to rotate according to the contact torque until a pose of the end effector is consistent with a pose of the working surface; and controlling the end effector to move tangentially along the working surface.

    REDUNDANT ROBOT JOINT ACCELERATION PLANNING METHOD, REDUNDANT ROBOT USING THE SAME, AND COMPUTER READABLE STORAGE MEDIUM

    公开(公告)号:US20230101489A1

    公开(公告)日:2023-03-30

    申请号:US17553758

    申请日:2021-12-16

    Abstract: A joint acceleration planning method, a redundant robot using the same, and a computer readable storage medium are provided. The method includes: obtaining an optimization objective function, a joint acceleration inequation constraint function and a joint acceleration equation constraint function corresponding to the optimization target from a quadratic programming function library, where the optimization objective function is an objective function obtained based on the upper and lower limits of the optimization target and a Euclidean distance algorithm; and obtaining a joint acceleration planning result by performing a quadratic optimization solving on a joint acceleration of each of the target joints of the robot at time k according to the end Cartesian space speed at time k+1, the joint parameter set of the target joints of the robot at time k, the sampling period, the optimization objective function, the joint acceleration inequation constraint function, and the joint acceleration equation constraint function.

    Robot control method, robot, and computer-readable storage medium

    公开(公告)号:US12233550B2

    公开(公告)日:2025-02-25

    申请号:US17994394

    申请日:2022-11-28

    Abstract: A robot control method, a robot, and a computer-readable storage medium are provided. The method includes: obtaining a linear motion model of a robot; determining a predicted state corresponding to each moment in a preset time period based on the linear motion model; determining an expected state corresponding to each moment in the preset time period; and determining a compensation value of a velocity of joint(s) at each moment from k-th moment to k+N−1-th moment based on the predicted state corresponding to each moment in the preset time period and the expected state corresponding to each moment in the preset time period, determining instruction parameter(s) at the k-th moment based on the compensation value of the velocity of the joint(s) at the k-th moment, and adjusting a position of each of the joint(s) of the robot according to the instruction parameter(s) at the k-th moment.

    ROBOT OBSTACLE AVOIDANCE METHOD, COMPUTER READABLE STORAGE MEDIUM, AND ROBOT

    公开(公告)号:US20230158672A1

    公开(公告)日:2023-05-25

    申请号:US18052535

    申请日:2022-11-03

    CPC classification number: B25J9/1666 B25J9/163

    Abstract: A robot obstacle avoidance method, a robot controller using the same, and a storage medium are provided. The method includes: determining an influence value of an obstacle on a motion range of a joint of the robot according to a position of the obstacle in a workspace of the robot; establishing a state transition relationship of the robot by taking a joint velocity of the robot as a control target and a joint angular velocity of the robot as a control input quantity; and avoiding the robot from colliding with the obstacle during a movement process of the robot by performing a model predictive control on the robot according to the state transition relationship and the influence value. In the present disclosure, the influence of the obstacle on the motion range of the joint of the robot is fully considered.

    Robot obstacle avoidance method, computer readable storage medium, and robot

    公开(公告)号:US12115673B2

    公开(公告)日:2024-10-15

    申请号:US18052535

    申请日:2022-11-03

    CPC classification number: B25J9/1666 B25J9/163

    Abstract: A robot obstacle avoidance method, a robot controller using the same, and a storage medium are provided. The method includes: determining an influence value of an obstacle on a motion range of a joint of the robot according to a position of the obstacle in a workspace of the robot; establishing a state transition relationship of the robot by taking a joint velocity of the robot as a control target and a joint angular velocity of the robot as a control input quantity; and avoiding the robot from colliding with the obstacle during a movement process of the robot by performing a model predictive control on the robot according to the state transition relationship and the influence value. In the present disclosure, the influence of the obstacle on the motion range of the joint of the robot is fully considered.

    Redundant robot joint acceleration planning method, redundant robot using the same, and computer readable storage medium

    公开(公告)号:US11992946B2

    公开(公告)日:2024-05-28

    申请号:US17553758

    申请日:2021-12-16

    CPC classification number: B25J9/1651 B25J9/1607

    Abstract: A joint acceleration planning method, a redundant robot using the same, and a computer readable storage medium are provided. The method includes: obtaining an optimization objective function, a joint acceleration inequation constraint function and a joint acceleration equation constraint function corresponding to the optimization target from a quadratic programming function library, where the optimization objective function is an objective function obtained based on the upper and lower limits of the optimization target and a Euclidean distance algorithm; and obtaining a joint acceleration planning result by performing a quadratic optimization solving on a joint acceleration of each of the target joints of the robot at time k according to the end Cartesian space speed at time k+1, the joint parameter set of the target joints of the robot at time k, the sampling period, the optimization objective function, the joint acceleration inequation constraint function, and the joint acceleration equation constraint function.

    MASSAGE MOTION CONTROL METHOD, ROBOT CONTROLLER USING THE SAME, AND COMPUTER READABLE STORAGE MEDIUM

    公开(公告)号:US20220379469A1

    公开(公告)日:2022-12-01

    申请号:US17702769

    申请日:2022-03-23

    Abstract: A massage motion control method, a robot controller using the same, and a storage medium are provided. The method includes: calculating a robot end desired speed and a robot end desired angular speed corresponding to a desired massage trajectory of a massage robot to compensate using two obtained robot end compensation amounts in the case that the desired massage trajectory for a target massage area at a current control cycle, a robot end speed compensation amount meeting a desired massage intensity requirement, and a robot end angular speed compensation amount adapted to an environmental curvature of the target massage area are obtained, and controlling the massage robot by determining a corresponding to-be-outputted joint angle based on motion parameter(s) obtained by the compensation. In this manner, the adaptive change of the massage position and the massage intensity for the massage area of the patient can be realized.

Patent Agency Ranking