Abstract:
A modular variable vane assembly includes an airfoil, an inner case, and an outer case. The airfoil extends between a first end and a second end along an axis. The airfoil has a connector that extends from the first end and a pivot member that extends from the second end. The inner case defines a pivot opening that is arranged to receive the pivot member. The outer case defines a first opening that extends from a first outer case surface towards a second outer case surface along the axis. The first opening is arranged to receive the connector.
Abstract:
In one exemplary embodiment, a center body support for a gas turbine engine includes a fan exit guide vane mounting ring and an outer annular wall. An aft flange extends radially outward from the outer annular wall. An inner annular wall is radially spaced from and structurally interconnected to the outer annular wall by a circumferential array of struts. A brace interconnects the aft flange to a forward portion of the outer annular wall. The aft flange includes inner and outer mounting features spaced radially apart from one another. The inner and outer mounting feature respectively receive first and second sets of fasteners. The forward portion extends in a radially outward direction from the outer annular wall. The forward portion includes a forward mounting feature that receives a third set of fasteners. The outer and forward mounting features are secured to the fan exit guide vane mounting ring respectively by the first and third sets of fasteners. Forward, outer and inner mounting features define a triangular cross-sectional shape. The forward portion has a radial inner end opposite a radial outer end. The brace is joined at the radial outer end. The brace transfers an axial load from the aft flange to the radial outer end of the forward portion.
Abstract:
An upper bifi frame for preventing air leakage in a gas turbine engine including an engine casing and a fan case is provided. The upper bifi frame includes a forward fairing having a forward fairing midsection extending between the engine casing and the fan case. The forward fairing has a forward fairing first end including a flange configured to couple to the engine casing. The forward fairing has a forward fairing second end extending from the forward fairing midsection and configured to couple to the fan case. At least one aft seal is secured to the forward fairing and forms a seal therewith.
Abstract:
An upper bifi frame for preventing air leakage in a gas turbine engine including an engine casing and a fan case is provided. The upper bifi frame includes a forward fairing having a forward fairing midsection extending between the engine casing and the fan case. The forward fairing has a forward fairing first end including a flange configured to couple to the engine casing. The forward fairing has a forward fairing second end extending from the forward fairing midsection and configured to couple to the fan case. At least one aft seal is secured to the forward fairing and forms a seal therewith. A wedge seal is coupled to the forward fairing and the at least one aft seal and is operative to prevent air leakage to a pylon that is secured to the engine casing.
Abstract:
An upper bifi frame for preventing air leakage in a gas turbine engine including an engine casing and a fan case is provided. The upper bifi frame includes a forward fairing having a forward fairing midsection extending between the engine casing and the fan case. The forward fairing has a forward fairing first end including a flange configured to couple to the engine casing. The forward fairing has a forward fairing second end extending from the forward fairing midsection and configured to couple to the fan case. At least one aft seal is secured to the forward fairing and forms a seal therewith. A wedge seal is coupled to the forward fairing and the at least one aft seal and is operative to prevent air leakage to a pylon that is secured to the engine casing.
Abstract:
An upper bifi frame for preventing air leakage in a gas turbine engine including an engine casing and a fan case is provided. The upper bifi frame includes a forward fairing having a forward fairing midsection extending between the engine casing and the fan case. The forward fairing has a forward fairing first end including a flange configured to couple to the engine casing. The forward fairing has a forward fairing second end extending from the forward fairing midsection and configured to couple to the fan case. At least one aft seal is secured to the forward fairing and forms a seal therewith.
Abstract:
A center body support for a gas turbine engine includes an outer annular wall. An aft flange extends radially outward from the outer annular wall. A brace interconnects the aft flange to a forward portion of the outer annular wall. The aft flange, brace and forward portion of the outer annual wall provide a unitary, one-piece structure.
Abstract:
A grounding sleeve for grounding an electrically insulated element disposed between two metal components includes an annular body extending between a first end and a second end. At least one window is formed in the annular body between the first end and the second end.
Abstract:
A static guide vane for use in a fan section of a gas turbine engine includes an outer platform and an inner platform. The inner and outer platforms are connected by an airfoil. The airfoil have channels extending into a main body of the airfoil to reduce the weight of the vane. A cover closes off the channels with the cover providing a portion of the airfoil.
Abstract:
A modular variable vane assembly includes an airfoil, an inner case, and an outer case. The airfoil extends between a first end and a second end along an axis. The airfoil has a connector that extends from the first end and a pivot member that extends from the second end. The inner case defines a pivot opening that is arranged to receive the pivot member. The outer case defines a first opening that extends from a first outer case surface towards a second outer case surface along the axis. The first opening is arranged to receive the connector.