Abstract:
Turbomachinery hardware, used in a rotor assembly and a stator assembly, including an airfoil portion including a leading edge, a trailing edge, a pressure side, and a suction side, and a platform on which the airfoil portion is disposed. The platform including a platform axis, a pressure side mateface located adjacent to the pressure side of the airfoil portion and a suction side mateface located adjacent to the suction side airfoil portion, wherein a portion of a pressure side mateface includes a first geometry, and a portion of a suction side mateface includes a second geometry. The first geometry is selected from a group consisting of: oblique to a platform axis, and a first curved portion. The second geometry is selected from a group consisting of: oblique to the platform axis and a second curved portion.
Abstract:
Turbomachinery hardware, used in a rotor assembly and a stator assembly, including an airfoil portion including a leading edge, a trailing edge, a pressure side, and a suction side, and a platform on which the airfoil portion is disposed. The platform including a platform axis, a pressure side mateface located adjacent to the pressure side of the airfoil portion and a suction side mateface located adjacent to the suction side airfoil portion, wherein a portion of a pressure side mateface includes a first geometry, and a portion of a suction side mateface includes a second geometry. The first geometry is selected from a group consisting of: oblique to a platform axis, and a first curved portion. The second geometry is selected from a group consisting of: oblique to the platform axis and a second curved portion.
Abstract:
A gas turbine engine has a fan section including a fan hub supporting a plurality of fan blades for rotation relative to a fan case. A shaft is rotatable relative to the fan case about an engine center axis. A geared architecture is driven by the shaft and provides driving output to rotate the fan hub. A compressor is driven by the shaft and is positioned forward of the geared architecture. The compressor includes at least first and second stages with the first stage being positioned forward of the plurality of fan blades and the second stage being positioned aft of the plurality of fan blades. The compressor includes at least one set of vanes that rotate in a first direction about the engine center axis and at least one set of compressor blades that rotate in a second direction about the engine center axis. The second direction is opposite of the first direction.
Abstract:
A gas turbine engine includes a first stage compressor, an intercooler in fluid communication with the first stage compressor, and a second stage compressor in fluid communication with the intercooler. The engine also includes a combustor in fluid communication with the second stage compressor and a turbine in fluid communication with the combustor. The intercooler cools an air inflow from the first stage compressor and the recuperator heats the airflow traveling from the second stage compressor to the turbine exhaust. The intercooler and recuperator are arranged radially outward of the combustor.
Abstract:
A gas turbine engine has a fan section including a fan hub supporting a plurality of fan blades for rotation relative to a fan case. A shaft is rotatable relative to the fan case about an engine center axis. A geared architecture is driven by the shaft and provides driving output to rotate the fan hub. A compressor is driven by the shaft and is positioned forward of the geared architecture. The compressor includes at least first and second stages with the first stage being positioned forward of the plurality of fan blades and the second stage being positioned aft of the plurality of fan blades. The compressor includes at least one set of vanes that rotate in a first direction about the engine center axis and at least one set of compressor blades that rotate in a second direction about the engine center axis. The second direction is opposite of the first direction.