Abstract:
A vane cluster for a gas turbine engine includes a first end-of-cluster vane, a second end-of-cluster vane, a neighbor vane adjacent to said second end-of-cluster vane; and a multiple of base vanes between said first end-of-cluster vane and said neighbor vane.
Abstract:
A pre-diffuser and exit guide vane (EGV) system for a gas turbine engine includes an annular EGV assembly containing a number of guide vanes and having an annular opening bounded by a radially inner annular sealing surface at a first radius and a radially outer annular sealing surface at a second radius. First and second seals substantially matching the first and second radii respectively join the EGV assembly to an annular pre-diffuser having an annular opening bounded by radially inner and outer annular sealing surfaces at substantially the first and second radii. The seals seal the inner sealing surface of the EGV assembly to the inner sealing surface of the pre-diffuser and the second seal seals the outer sealing surface of the EGV assembly to the outer sealing surface of the pre-diffuser, such that the EGV assembly annular opening is in fluid communication with the annular opening of the pre-diffuser.
Abstract:
A turbomachine airfoil element includes an airfoil that has pressure and suction sides spaced apart from one another in a thickness direction and joined to one another at leading and trailing edges. The airfoil extends in a radial direction a span that is in a range of 0.55-0.65 inch (14.0-16.5 mm). A chord length extends in a chordwise direction from the leading edge to the trailing edge at 50% span is in a range of 0.76-0.86 inch (19.3-21.8 mm). The airfoil element includes at least two of a first mode with a frequency of 3335±10% Hz, a second mode with a frequency of 5715±10% Hz and a third mode with a frequency of 41797±10% Hz.
Abstract:
Systems and methods are disclosed for anti-rotation lugs. A stator for a gas turbine engine may comprise an outer shroud, an inner shroud, and a plurality of vanes located between the outer shroud and the inner shroud. A plurality of anti-rotation lugs may be coupled to the inner shroud. The anti-rotation lugs may be configured to contact a diffuser case in order to prevent rotation of the stator. The anti-rotation lugs may comprise a body and a tapered shoulder. The tapered shoulder may distribute stress concentrations in the anti-rotation lugs.
Abstract:
A pre-diffuser and exit guide vane (EGV) system for a gas turbine engine includes an annular EGV assembly containing a number of guide vanes and having an annular opening bounded by a radially inner annular sealing surface at a first radius and a radially outer annular sealing surface at a second radius. First and second seals substantially matching the first and second radii respectively join the EGV assembly to an annular pre-diffuser having an annular opening bounded by radially inner and outer annular sealing surfaces at substantially the first and second radii. The seals seal the inner sealing surface of the EGV assembly to the inner sealing surface of the pre-diffuser and the second seal seals the outer sealing surface of the EGV assembly to the outer sealing surface of the pre-diffuser, such that the EGV assembly annular opening is in fluid communication with the annular opening of the pre-diffuser.
Abstract:
Systems and methods are disclosed for anti-rotation lugs. A stator for a gas turbine engine may comprise an outer shroud, an inner shroud, and a plurality of vanes located between the outer shroud and the inner shroud. A plurality of anti-rotation lugs may be coupled to the inner shroud. The anti-rotation lugs may be configured to contact a diffuser case in order to prevent rotation of the stator. The anti-rotation lugs may comprise a body and a tapered shoulder. The tapered shoulder may distribute stress concentrations in the anti-rotation lugs.