Abstract:
The detection and assay of fissionable material is carried out on a container known or suspected to have a material with at least one fissionable isotope. The material is irradiated with neutrons from two or more different neutron sources. The fission rates inducted at each irradiation energy are acquired with at least one neutron detector. A multispectral active neutron interrogation analysis (MANIA) is carried out to compare the detected fission rates of the neutron spectra with calculated fission rates where an iterative algorithm is carried out on a system of linear equations to solve for the isotopic composition of one or more isotopes to determine the presence, identity, and quantities of fissionable isotopes in said container.
Abstract:
The detection and assay of fissionable material is carried out on a container known or suspected to have a material with at least one fissionable isotope. The material is irradiated with neutrons from two or more different neutron sources. The fission rates inducted at each irradiation energy are acquired with at least one neutron detector. A multispectral active neutron interrogation analysis (MANIA) is carried out to compare the detected fission rates of the neutron spectra with calculated fission rates where an iterative algorithm is carried out on a system of linear equations to solve for the isotopic composition of one or more isotopes to determine the presence, identity, and quantities of fissionable isotopes in said container.
Abstract:
The detection and assay of fissionable material is carried out on a container known or suspected to have a material with at least one fissionable isotope. The material is irradiated with neutrons from two or more different neutron sources. The fission rates inducted at each irradiation energy are acquired with at least one neutron detector. A multispectral active neutron interrogation analysis (MANIA) is carried out to compare the detected fission rates of the neutron spectra with calculated fission rates where an iterative algorithm is carried out on a system of linear equations to solve for the isotopic composition of one or more isotopes to determine the presence, identity, and quantities of fissionable isotopes in said container.
Abstract:
The detection and assay of fissionable material is carried out on a container known or suspected to have a material with at least one fissionable isotope. The material is irradiated with neutrons from two or more different neutron sources. The fission rates inducted at each irradiation energy are acquired with at least one neutron detector. A multispectral active neutron interrogation analysis (MANIA) is carried out to compare the detected fission rates of the neutron spectra with calculated fission rates where an iterative algorithm is carried out on a system of linear equations to solve for the isotopic composition of one or more isotopes to determine the presence, identity, and quantities of fissionable isotopes in said container.