Abstract:
A method of calibrating an individual sensor whose output varies with at least one operating condition. A generic calibration curve is produced for the variation of the sensor reading with the at least one operating condition for the particular sensor type of the individual sensor. Calibration readings are then taken for the individual sensor at just a small number of discrete values for the at least one operating condition which fall within the full range of operating values for the at least one operating condition for which the sensor is to be calibrated. Using the calibration readings, the generic calibration curve is then scaled in order to fit the generic curve to the individual sensor.
Abstract:
A contactless SAW based torque and temperature sensor comprising a first (2) and second (3) SAW resonator provided on a substrate made of Y+34° cut of quartz. The first SAW resonator (2) has its principle axis inclined at +45° to the X-axis of the substrate, which, in use is either aligned with the longitudinal axis of the device who torque is to be measured or is perpendicular thereto, and the second SAW (3) has its principle axis inclined at −45° to the X-axis of the substrate. A third SAW (4) has its principle axis inclined at an angle of 30 degrees to the X-axis of the substrate. Each said SAW resonator (2,3,4) is formed by laying a film of aluminum on the substrate having a thickness (h) and the SAW resonators have an average operating wavelength λ where the ratio h/λ is in the range 0.021 to 0.032.