Abstract:
A method for expanding an initial ontology via processing of communication data, wherein the initial ontology is a structural representation of language elements comprising a set of entities, a set of terms, a set of term-entity associations, a set of entity-association rules, a set of abstract relations, and a set of relation instances. A method for extracting a set of significant phrases and a set of significant phrase co-occurrences from an input set of documents further includes utilizing the terms to identify relations within the training set of communication data, wherein a relation is a pair of terms that appear in proximity to one another.
Abstract:
A method for expanding an initial ontology via processing of communication data, wherein the initial ontology is a structural representation of language elements comprising a set of entities, a set of terms, a set of term-entity associations, a set of entity-association rules, a set of abstract relations, and a set of relation instances. A method for extracting a set of significant phrases and a set of significant phrase co-occurrences from an input set of documents further includes utilizing the terms to identify relations within the training set of communication data, wherein a relation is a pair of terms that appear in proximity to one another.
Abstract:
Systems, methods, and media for developing ontologies and analyzing communication data are provided herein. In an example implementation, the method includes: identifying terms in in a set of communication data; identifying a list of possible relations of the identified terms; scoring the possible relations according to a set of predefined merits; ranking the possible relations into a list of possible relations in descending order according to their score; and tagging relations in the set of communication data. The relations may be tagged by identifying the possible relations in the communication data in order corresponding with the list of possible relations. The possible relations that have lower rankings that conflict with higher ranking relations are not tagged. The conflicts may be determined by a predefined set of conflict criteria.
Abstract:
A method for expanding an initial ontology via processing of communication data, wherein the initial ontology is a structural representation of language elements comprising a set of entities, a set of terms, a set of term-entity associations, a set of entity-association rules, a set of abstract relations, and a set of relation instances. A method for extracting a set of significant phrases and a set of significant phrase co-occurrences from an input set of documents further includes utilizing the terms to identify relations within the training set of communication data, wherein a relation is a pair of terms that appear in proximity to one another.
Abstract:
A method for expanding an initial ontology via processing of communication data, wherein the initial ontology is a structural representation of language elements comprising a set of entities, a set of terms, a set of term-entity associations, a set of entity-association rules, a set of abstract relations, and a set of relation instances. A method for extracting a set of significant phrases and a set of significant phrase co-occurrences from an input set of documents further includes utilizing the terms to identify relations within the training set of communication data, wherein a relation is a pair of terms that appear in proximity to one another.
Abstract:
A method for expanding an initial ontology via processing of communication data, wherein the initial ontology is a structural representation of language elements comprising a set of entities, a set of terms, a set of term-entity associations, a set of entity-association rules, a set of abstract relations, and a set of relation instances. A method for extracting a set of significant phrases and a set of significant phrase co-occurrences from an input set of documents further includes utilizing the terms to identify relations within the training set of communication data, wherein a relation is a pair of terms that appear in proximity to one another.
Abstract:
Systems, methods, and media for developing ontologies and analyzing communication data are provided herein. In an example implementation, the method includes: identifying terms in in a set of communication data; identifying a list of possible relations of the identified terms; scoring the possible relations according to a set of predefined merits; ranking the possible relations into a list of possible relations in descending order according to their score; and tagging relations in the set of communication data. The relations may be tagged by identifying the possible relations in the communication data in order corresponding with the list of possible relations. The possible relations that have lower rankings that conflict with higher ranking relations are not tagged. The conflicts may be determined by a predefined set of conflict criteria.