Abstract:
A tool for reducing vibrations in wind turbine blades at standstill includes an elongate sleeve formed of a net-like material for fitting over the blades, wherein the sleeve is formed with at least one protruding structure extending along at least a part of the length of the sleeve having an undulating form, and which is arranged so that when the sleeve is fitted on a blade the protruding structure or structures lie at the leading and/or trailing edge of the blade. A method for securing wind turbine blades against oscillations is also disclosed.
Abstract:
A tool for reducing vibrations in wind turbine blades at standstill includes an elongate sleeve formed of a net-like material for fitting over the blades, wherein the sleeve is formed with at least one protruding structure extending along at least a part of the length of the sleeve having an undulating form, and which is arranged so that when the sleeve is fitted on a blade the protruding structure or structures lie at the leading and/or trailing edge of the blade. A method for securing wind turbine blades against oscillations is also disclosed.
Abstract:
A wind turbine blade for a wind turbine includes an elongate body having a root end, a tip end, a leading edge, a trailing edge, a pressure side and a suction side, wherein the elongate body defines a longitudinal axis extending along a length of the elongate body from the root end to the tip end. The elongate body includes a pre-bend configured such that when the wind turbine blade is mounted on the wind turbine and orientated in an operative position, the blade generally curves in an upwind direction such that the tip end of the blade is positioned more upwind than the root end of the blade. The curve that defines the longitudinal axis of the elongate body has an inflection point between the root end and the tip end of the blade. A method of making such a wind turbine blade is also disclosed.