VISUALIZING AND UPDATING LEARNED EVENT MAPS IN SURVEILLANCE SYSTEMS
    1.
    发明申请
    VISUALIZING AND UPDATING LEARNED EVENT MAPS IN SURVEILLANCE SYSTEMS 有权
    监测和更新监测系统中的有用的事件

    公开(公告)号:US20110044533A1

    公开(公告)日:2011-02-24

    申请号:US12543204

    申请日:2009-08-18

    IPC分类号: G06K9/62 H04N7/18

    CPC分类号: G06K9/00771 G08B13/19613

    摘要: Techniques are disclosed for visually conveying an event map. The event map may represent information learned by a surveillance system. A request may be received to view the event map for a specified scene. The event map may be generated, including a background model of the specified scene and at least one cluster providing a statistical distribution of an event in the specified scene. Each statistical distribution may be derived from data streams generated from a sequence of video frames depicting the specified scene captured by a video camera. Each event may be observed to occur at a location in the specified scene corresponding to a location of the respective cluster in the event map. The event map may be configured to allow a user to view and/or modify properties associated with each cluster. For example, the user may label a cluster and set events matching the cluster to always (or never) generate an alert.

    摘要翻译: 公开了用于视觉传达事件图的技术。 事件地图可以表示监视系统学到的信息。 可以接收到查看指定场景的事件映射的请求。 可以生成事件映射,包括指定场景的背景模型和至少一个提供指定场景中的事件的统计分布的群集。 每个统计分布可以从从描述由摄像机捕获的指定场景的视频帧序列产生的数据流中导出。 可以观察每个事件发生在与事件映射中相应簇的位置相对应的指定场景中的位置处。 可以将事件映射配置为允许用户查看和/或修改与每个集群相关联的属性。 例如,用户可以标记集群并将与集群匹配的事件设置为始终(或从不)生成警报。

    VISUALIZING AND UPDATING LONG-TERM MEMORY PERCEPTS IN A VIDEO SURVEILLANCE SYSTEM
    2.
    发明申请
    VISUALIZING AND UPDATING LONG-TERM MEMORY PERCEPTS IN A VIDEO SURVEILLANCE SYSTEM 有权
    在视频监控系统中实现和更新长期记忆

    公开(公告)号:US20110050896A1

    公开(公告)日:2011-03-03

    申请号:US12551303

    申请日:2009-08-31

    IPC分类号: H04N7/18 G06K9/62

    摘要: Techniques are disclosed for visually conveying a percept. The percept may represent information learned by a video surveillance system. A request may be received to view a percept for a specified scene. The percept may have been derived from data streams generated from a sequence of video frames depicting the specified scene captured by a video camera. A visual representation of the percept may be generated. A user interface may be configured to display the visual representation of the percept and to allow a user to view and/or modify metadata attributes with the percept. For example, the user may label a percept and set events matching the percept to always (or never) result in alert being generated for users of the video surveillance system.

    摘要翻译: 公开了用于视觉地传达感知的技术。 感知可以表示视频监控系统学到的信息。 可以接收请求以查看指定场景的感知。 感知可能是从描绘由摄像机捕获的指定场景的视频帧序列产生的数据流导出的。 可以产生视觉的视觉表示。 用户界面可以被配置为显示感知的视觉表示,并允许用户使用感知来查看和/或修改元数据属性。 例如,用户可以标记感知并将匹配感知的事件设置为始终(或从不)导致为视频监控系统的用户生成警报。

    CONTEXT PROCESSOR FOR VIDEO ANALYSIS SYSTEM
    4.
    发明申请
    CONTEXT PROCESSOR FOR VIDEO ANALYSIS SYSTEM 有权
    视频分析系统的上下文处理器

    公开(公告)号:US20090087024A1

    公开(公告)日:2009-04-02

    申请号:US12112864

    申请日:2008-04-30

    IPC分类号: G06K9/00 G06K9/46

    摘要: Embodiments of the present invention provide a method and a system for mapping a scene depicted in an acquired stream of video frames that may be used by a machine-learning behavior-recognition system. A background image of the scene is segmented into plurality of regions representing various objects of the background image. Statistically similar regions may be merged and associated. The regions are analyzed to determine their z-depth order in relation to a video capturing device providing the stream of the video frames and other regions, using occlusions between the regions and data about foreground objects in the scene. An annotated map describing the identified regions and their properties is created and updated.

    摘要翻译: 本发明的实施例提供了一种用于映射可以由机器学习行为识别系统使用的所获取的视频帧流中描绘的场景的方法和系统。 场景的背景图像被分割成表示背景图像的各种对象的多个区域。 统计上相似的地区可能会合并并相关联。 分析这些区域以使用提供视频帧和其他区域的流的视频捕获设备来确定它们的z深度顺序,使用区域之间的遮挡以及关于场景中的前景物体的数据。 创建并更新描述已识别区域及其属性的注释地图。

    IDENTIFYING ANOMALOUS OBJECT TYPES DURING CLASSIFICATION
    5.
    发明申请
    IDENTIFYING ANOMALOUS OBJECT TYPES DURING CLASSIFICATION 有权
    在分类期间识别异常对象类型

    公开(公告)号:US20110052068A1

    公开(公告)日:2011-03-03

    申请号:US12551276

    申请日:2009-08-31

    IPC分类号: G06K9/46

    CPC分类号: G06K9/6251 G06K9/00771

    摘要: Techniques are disclosed for identifying anomaly object types during classification of foreground objects extracted from image data. A self-organizing map and adaptive resonance theory (SOM-ART) network is used to discover object type clusters and classify objects depicted in the image data based on pixel-level micro-features that are extracted from the image data. Importantly, the discovery of the object type clusters is unsupervised, i.e., performed independent of any training data that defines particular objects, allowing a behavior-recognition system to forgo a training phase and for object classification to proceed without being constrained by specific object definitions. The SOM-ART network is adaptive and able to learn while discovering the object type clusters and classifying objects and identifying anomaly object types.

    摘要翻译: 公开了用于在从图像数据提取的前景对象的分类期间识别异常对象类型的技术。 基于从图像数据提取的像素级微特征,使用自组织图和自适应共振理论(SOM-ART)网络来发现对象类型簇并对图像数据中描绘的对象进行分类。 重要的是,对象类型簇的发现是无监督的,即独立于定义特定对象的任何训练数据执行,允许行为识别系统放弃训练阶段,并且对象分类进行而不受特定对象定义的约束。 SOM-ART网络是自适应的,能够在发现对象类型集群并分类对象并识别异常对象类型时学习。

    ADAPTIVE VOTING EXPERTS FOR INCREMENTAL SEGMENTATION OF SEQUENCES WITH PREDICTION IN A VIDEO SURVEILLANCE SYSTEM
    6.
    发明申请
    ADAPTIVE VOTING EXPERTS FOR INCREMENTAL SEGMENTATION OF SEQUENCES WITH PREDICTION IN A VIDEO SURVEILLANCE SYSTEM 有权
    适应性视频监控系统预测序列分段的自适应投票专家

    公开(公告)号:US20110044492A1

    公开(公告)日:2011-02-24

    申请号:US12543379

    申请日:2009-08-18

    IPC分类号: G06K9/00

    CPC分类号: G06K9/00771

    摘要: A sequence layer in a machine-learning engine configured to learn from the observations of a computer vision engine. In one embodiment, the machine-learning engine uses the voting experts to segment adaptive resonance theory (ART) network label sequences for different objects observed in a scene. The sequence layer may be configured to observe the ART label sequences and incrementally build, update, and trim, and reorganize an ngram trie for those label sequences. The sequence layer computes the entropies for the nodes in the ngram trie and determines a sliding window length and vote count parameters. Once determined, the sequence layer may segment newly observed sequences to estimate the primitive events observed in the scene as well as issue alerts for inter-sequence and intra-sequence anomalies.

    摘要翻译: 机器学习引擎中的序列层,被配置为从计算机视觉引擎的观察中学习。 在一个实施例中,机器学习引擎使用投票专家来分割在场景中观察到的不同对象的自适应共振理论(ART)网络标签序列。 序列层可以被配置为观察ART标签序列并且逐渐地构建,更新和修整和重组那些标记序列的ngram特里。 序列层计算ngram trie中节点的熵,并确定滑动窗口长度和投票计数参数。 一旦确定,序列层可以划分新观察到的序列以估计在场景中观察到的原始事件以及发出序列间和序列内异常的警报。

    ADAPTIVE UPDATE OF BACKGROUND PIXEL THRESHOLDS USING SUDDEN ILLUMINATION CHANGE DETECTION
    8.
    发明申请
    ADAPTIVE UPDATE OF BACKGROUND PIXEL THRESHOLDS USING SUDDEN ILLUMINATION CHANGE DETECTION 有权
    使用SUDDEN ILLUMINATION CHANGE DETECTION的背景像素阈值的自适应更新

    公开(公告)号:US20100208986A1

    公开(公告)日:2010-08-19

    申请号:US12388409

    申请日:2009-02-18

    IPC分类号: G06K9/62

    CPC分类号: G06K9/00771

    摘要: Techniques are disclosed for a computer vision engine to update both a background model and thresholds used to classify pixels as depicting scene foreground or background in response to detecting that a sudden illumination changes has occurred in a sequence of video frames. The threshold values may be used to specify how much pixel a given pixel may differ from corresponding values in the background model before being classified as depicting foreground. When a sudden illumination change is detected, the values for pixels affected by sudden illumination change may be used to update the value in the background image to reflect the value for that pixel following the sudden illumination change as well as update the threshold for classifying that pixel as depicting foreground/background in subsequent frames of video.

    摘要翻译: 公开了用于计算机视觉引擎的技术,用于更新背景模型和用于将像素分类为描绘场景前景或背景的阈值,以响应于检测到在视频帧序列中已经发生突然的照明变化。 可以使用阈值来指定给定像素在分类为描绘前景之前可能与背景模型中的对应值不同的像素。 当检测到突然的照明变化时,可以使用受突然照明改变影响的像素的值来更新背景图像中的值,以反映在突然照射变化之后该像素的值,并且更新用于对该像素进行分类的阈值 作为描绘后续视频帧中的前景/背景。

    VIDEO SURVEILLANCE SYSTEM CONFIGURED TO ANALYZE COMPLEX BEHAVIORS USING ALTERNATING LAYERS OF CLUSTERING AND SEQUENCING
    9.
    发明申请
    VIDEO SURVEILLANCE SYSTEM CONFIGURED TO ANALYZE COMPLEX BEHAVIORS USING ALTERNATING LAYERS OF CLUSTERING AND SEQUENCING 有权
    视频监控系统配置分析复杂行为使用组合和序列的替代层

    公开(公告)号:US20110064268A1

    公开(公告)日:2011-03-17

    申请号:US12561977

    申请日:2009-09-17

    IPC分类号: G06T7/00 G06T7/20

    摘要: Techniques are disclosed for a video surveillance system to learn to recognize complex behaviors by analyzing pixel data using alternating layers of clustering and sequencing. A video surveillance system may be configured to observe a scene (as depicted in a sequence of video frames) and, over time, develop hierarchies of concepts including classes of objects, actions and behaviors. That is, the video surveillance system may develop models at progressively more complex levels of abstraction used to identify what events and behaviors are common and which are unusual. When the models have matured, the video surveillance system issues alerts on unusual events.

    摘要翻译: 公开了用于视频监控系统的技术,以通过使用交替的聚类和排序层分析像素数据来学习识别复杂行为。 视频监视系统可以被配置为观察场景(如视频帧序列所示),并且随着时间的推移,开发包括对象,动作和行为类别的概念的层级。 也就是说,视频监控系统可以开发逐渐更复杂的抽象级别的模型,用于识别哪些事件和行为是常见的,哪些是不寻常的。 当模型成熟时,视频监控系统会发出异常事件警报。

    DETECTING ANOMALOUS TRAJECTORIES IN A VIDEO SURVEILLANCE SYSTEM
    10.
    发明申请
    DETECTING ANOMALOUS TRAJECTORIES IN A VIDEO SURVEILLANCE SYSTEM 有权
    在视频监控系统中检测异常TRAJECTORIES

    公开(公告)号:US20110052000A1

    公开(公告)日:2011-03-03

    申请号:US12551395

    申请日:2009-08-31

    IPC分类号: G06K9/00

    摘要: Techniques are disclosed for determining anomalous trajectories of objects tracked over a sequence of video frames. In one embodiment, a symbol trajectory may be derived from observing an object moving through a scene. The symbol trajectory represents semantic concepts extracted from the trajectory of the object. Whether the symbol trajectory is anomalous may be determined, based on previously observed symbol trajectories. A user may be alerted upon determining that the symbol trajectory is anomalous.

    摘要翻译: 公开了用于确定通过视频帧序列跟踪的对象的异常轨迹的技术。 在一个实施例中,可以从观察通过场景移动的对象导出符号轨迹。 符号轨迹表示从对象的轨迹中提取的语义概念。 可以基于先前观察到的符号轨迹来确定符号轨迹是否是异常的。 在确定符号轨迹是异常的时候可以警告用户。