Abstract:
Apparatus for adding movable wings and feet to a conventional hollow waterfowl decoy includes a battery powered electric motor with a rotary disk operatively connected thereto, disposed in the hollow interior of the decoy body, a pair of wing assemblies extending through a pair of opposed slots in the sides of the decoy body and connected to the rotary disk and a pair of foot assemblies extending through a second pair of opposed slots in the sides of the decoy body and connected to the rotary disk, such that activation of the motor and resulting rotation of the disk produces oscillatory motion of the wing assemblies and foot assemblies to simulate the movement of live birds. A method of adding movable appendages to a waterfowl decoy and a method of adjusting the movement of such appendages are also provided.
Abstract:
A waterfowl decoy with interchangeable moveable appendages includes a body with a hollow interior and two opposed sides with shaft apertures extending through the two sides in opposed relation to each other, a drive assembly with two battery powered electric motors, each having a rotatable output shaft, disposed in the hollow interior of the body with the output shafts extending through the shaft apertures on each side of the body of the decoy, and a variety of appendage assemblies each removeably connectable to an output shaft of one of the motors. Each appendage assembly has a hub and at least one appendage such as a wing and/or a paddle connected to the hub, so that upon activation of the motors the hubs rotate and the appendages move to simulate movements of live waterfowl.
Abstract:
The present invention addresses an improved method of animating a waterfowl decoy or bird sculpture. An offset support assembly supports wing and paddle appendages that attach to a rotating or oscillating output shaft extending from the body of a waterfowl decoy or bird sculpture. The rotation or oscillation of the offset wing appendages produces a visual quality replicating the flapping of wings. The paddle appendages propel a floating decoy on the surface of the water and impart a side-to-side movement. The invention can be used to impart a more realistic motion and appearance to either floating or pole-mounted decoys, or can be used with decorative sculptures or models.
Abstract:
A self-propelled waterfowl decoy to float on and propel itself along the surface of a body of water includes a body with a hollow interior and two opposed sides with shaft apertures extending through the two sides in opposed relation to each other, a drive assembly with two battery powered electric motors, each having a rotatable output shaft, disposed in the hollow interior of the body with the output shafts extending through the shaft apertures on each side of the body of the decoy, and a pair of paddle wheel assemblies each connected to an output shaft of one of the motors and each having a hub and at least one paddle extending outwardly from the hub, so that upon activation of the motors the paddles rotate to engage the surface of the water to propel the decoy along the surface and splash water toward the rear of the decoy.
Abstract:
The apparatus includes a 1.5 volt D-size battery, an electric motor, a rotary disk, and two plastic wing/foot assemblies. The apparatus is mounted inside a commercial waterfowl decoy and provides adjustable wing/foot movement with resulting water splashing actions when the decoy is afloat. These motions enhance the attraction of the decoys to the flying waterfowl.