摘要:
A transmission line device (200) employs a first ground plane (118) that is disposed on a first dielectric substrate (202). A first conductive layer (210) that encloses a first area (213)is disposed on a second dielectric substrate (206), which substrate is positioned substantially adjacent to the first dielectric substrate (202). A second conductive layer (211) that encloses an area corresponding to the first area (213) is disposed on a third dielectric substrate (207), which substrate is positioned substantially adjacent to the second dielectric substrate (206). A coil structure is thereby provided that can be employed in the fabrication of a transmission line device, according to the invention.
摘要:
A high Q multi-layer ceramic transmission line resonator (100) used for RF applications. The resonator (100) includes a plurality of strips (102) which are separated by a ceramic substrate (104). Each of the strips are interconnected using vias (110) passing through the ceramic substrate (104). The invention utilizes current manufacturing processes to fabricate an equivalent thick center conductor to effectively increase the Q factor. This allows for the resonator to be used in miniature RF communication devices utilized in high tier devices such as voltage controlled oscillators (VCOs) or integrated filter circuits.
摘要:
An electrical circuit (500) includes an input means (503) for providing an input signal, an output means for providing an output signal, and a transmission line device (421) disposed substantially between the input means (503) and the output means. The transmission line device inludes a first ground plane (505) disposed on a first dielectric substrate (502), and a first conductive layer (421-1) disposed, and enclosing a first area, on a second dielectric substrate (506) that is positioned substantially adjacent to the first dielectric substrate (502). The transmission line device (421) further includes a second conductive layer (421-2) that encloses an area corresponding to the first area on a first major surface of a third dielectric substrate (504) that is positioned substantially adjacent to the second dielectric substrate (506).
摘要:
A switch circuit for a cellular radiotelephone operable in a TDMA communication scheme. The switch circuit is disposed upon a plurality of tandemly-positioned ceramic substrates having transmission lines disposed upon one of the ceramic substrates. The switch circuit alternately connects transmitter circuitry to an antenna or receiver circuitry to the antenna, thereby alternately to permit transmission or reception of signals generated by, or received by the radiotelephone. Because circuits disposed upon ceramic materials are of low insertion losses, the switch circuit is advantageously utilized to form a portion of the radiotelephone.
摘要:
An RF filter (100) includes a ceramic resonator (116) sandwiched between first and second compensating discs (114 and 120) for temperature compensation, low loss mounting and heat sinking of the ceramic resonator (116). Good thermal contact between the ceramic resonator (116) and discs (114 and 120) is produced by a compressive force applied by copper plates (112 and 128) and copper can (124). The resonant frequency of the RF filter is tuned by means of a copper-plated tuning shaft (104) and ceramic tuning slug (118) which are positioned by brass bushing (134) in copper pipe (130 and 132). Input and output signals are coupled to the RF filter via respective probes (122).
摘要:
An absorptive resonant cavity filter suitable for use on the output of a transmitter power amplifier and capable of substantially constant predetermined resistive input impedance at all frequencies. The structure comprises a bandpass cavity which instead of an input coupling loop employs a conductor coupled from the input and configured along the wall of the cavity to form a transmission line of predetermined impedance and terminated by a resistor of similar impedance value.
摘要:
A phased array antenna (1000) is formed using a number of independently controllable piezoelectric phase shifters (1300) which results in a low cost phased array antenna that is functional at microwave and/or millimeter wave frequencies. In addition, the independently controllable piezoelectric phase shifters (1300) have sufficient phase range to allow a single antenna to be steered over a wide angle field of view. Piezoelectric phase shifters (1300) comprise at least one-voltage variable capacitor (1310, 1320, FIG. 2). Typically, the piezoelectric material used in the voltage variable capacitors is selected from a group consisting of lead-titanate (PbTiO.sub.3), lead-zirconate (PbZrO.sub.3), barium-titanate (BaTiO.sub.3), and lead-zirconate-titanate (PbZr.sub.x Ti.sub.1-x O.sub.3), where x varies from zero to one.
摘要:
A low loss high frequency transmitting/receiving switching module (100) having an input and output port (106,110), that individually may be connected to an antenna or external port (108,112) by applying an appropriate bias potential to a switching circuit (140). The switching circuit (140) is designed to operate with only a single diode (130). This is accomplished by using two, four-port 3 db directional couplers (102,104) connected with two coupling lines (114,118). The switching diode (130) is used to add or delete a transmission line (142) in one of the coupling lines (118) to proved a signal phase shift. The switching circuit (140) switches in or out a 180 degree phase shift to change the phase relationship between signals in the two sets of coupling lines (114,116,118,120) to determine which ports (106,108,110,112) of the directional couplers (102,104) are interconnected.
摘要:
What is described is a commonly coupled high frequency transmitting/receiving switching module (100). The switching module (100), has a transmitting circuit (102), a receiving circuit (104), an antenna circuit (106), an external circuit (108), a coupling circuit (110) and control circuits (124, 126). The switching module may be switched between one of four circuit paths (202, 204, 206, 208) each path incorporating an integral harmonic filter (210, 212). This structure is adapted for use in a multi-layer ceramic integrated circuit, and provides the advantage of minimizing current consumption with a minimal number of components.
摘要:
A single-block ceramic filter (102) is coupled to two antennas (142 and 144) for providing both antenna duplexing and antenna-summed diversity in a duplex radio transceiver (100). One antenna (142) is coupled by the filter (102) to a transmitter (132) and to a receiver (130), and a second antenna (144) is switchably coupled by the filter (102) to the receiver (130) by diversity control circuitry (101) in response to a diversity control signal (137). A microcomputer (134) in the transceiver (100) is coupled to the receiver (130) for monitoring the received signal strength (135). When the received signal strength (135) drops in level indicating that the signal being received on the antennas (142 to 144) has become degraded due to fading or other interference, the microcomputer (134) changes the binary state of the diversity control signal (137) for switching the receiver (130) between antenna (142) and both antennas (142 and 144).